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Abstract

The value of active investment management is traditionally measured by alpha, beta, track-
ing error, and the Sharpe and information ratios. These are essentially static characteristics
of the marginal distributions of returns at a single point in time, and do not incorporate
dynamic aspects of a manager’s investment process. In this paper, I propose a new mea-
sure of the value of active investment management that captures both static and dynamic
contributions of a portfolio manager’s decisions. The measure is based on a decomposition
of a portfolio’s expected return into two distinct components: a static weighted-average of
the individual securities’ expected returns, and the sum of covariances between returns and
portfolio weights. The former component measures the portion of the manager’s expected
return due to static investments in the underlying securities, while the latter component cap-
tures the forecast power implicit in the manager’s dynamic investment choices. This measure
can be computed for long-only investments, long/short portfolios, and asset allocation rules,
and is particularly relevant for hedge-fund strategies where both components are significant
contributors to their expected returns, but only one should garner the high fees that hedge
funds typically charge. Several analytical and empirical examples are provided to illustrate
the practical relevance of these new measures.
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1 Introduction

With the growing popularity of hedge funds and other absolute-return investment strategies,

there is a widening gap between the performance metrics of traditional investment manage-

ment and alternatives. While alpha, beta, volatility, tracking error, the Sharpe ratio, and the

information ratio have become the standard tools for gauging the value-added of long-only

portfolio managers, they have not had as much impact among investors of absolute-return

strategies. Part of this gap is no doubt cultural in origin; the growth of the mutual-fund

industry was accelerated by the broad acceptance of portfolio theory and the benefits of di-

versification. This, in turn, led to the push for indexation and benchmark-based performance

attribution, from which many of the current performance measures emerged.

However, another possible reason for the lack of impact of traditional performance mea-

sures for alternative investments is the fact that such measures are static, and do not capture

the dynamic and predictive nature of active investment strategies. Specifically, measures such

as alpha, beta, tracking error, and the information ratio are all functions of parameters of the

portfolio-return and benchmark-return distributions at a single point in time, e.g., expected

returns, covariances, and variances. None of these measures involves the relation between

returns at multiple points in time, yet such multi-point statistics are often the central focus

of active investment strategies. For example, the most admired portfolio managers of our

time are revered for their ability to foresee certain market trends well in advance of the

public, or to detect mispriced securities and exploit them ahead of the market, or to enter

or exit certain investments before others recognize the opportunities. In every case, these

investment skills involve forecasts or predictions, yet the standard performance measures

listed above do not depend explicitly on the forecast power of the portfolio manager.

In this paper, I propose a new measure of the economic value of active management—an

active/passive or “AP” decomposition—that takes into account forecast power explicitly. It

is a simple decomposition of the expected return of a portfolio into two components: one

that depends only on the average values of portfolio weights and asset returns, and another

that depends on the correlation between portfolio weights and returns. It is this latter

component that measures directly the value of active management—the portfolio weights of

a successful manager will generally be positively correlated with returns, yielding a positive
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contribution to the portfolio’s expected return. This correlation is directly affected by the

manager’s forecasting abilities because portfolio weights are functions of the manager’s prior

information. Therefore, the correlation between portfolio weights and returns at date t is a

measure of the predictive power of the information used by the manager to select his date-t

portfolio weights. In short, it is a measure of the manager’s asset-timing ability.

Of course, it is possible to generate positive expected returns without any variability in

portfolio weights: a buy-and-hold strategy in assets with positive risk premia such as the

S&P 500 will yield a positive expected return. In this case, the active component described

above will contribute nothing to the portfolio’s expected return, hence the portfolio can be

said to be passive. This is a novel definition of passive and active investing, and has little

to do with the standard definitions involving deviations from a benchmark portfolio. I show

that a more natural definition for a passive portfolio is one where the portfolio weights are

uncorrelated with returns. If weights have no forecast power, then active management is

adding no value and the only source of expected return is risk premia, which can usually be

generated by a buy-and-hold portfolio.

The AP decomposition is a simple consequence of the definition of covariance, and is triv-

ial for active managers to implement. In fact, position-level information is not necessary—

only average portfolio weights and individual-asset average returns are needed to perform the

decomposition. Moreover, because the decomposition is based on an identity, the empirical

version holds exactly, allowing us to attribute realized or ex-post performance accurately

and exhaustively to active and passive components.

Finally, if asset returns are assumed to satisfy a linear K-factor model such as the Capi-

tal Asset Pricing Model (CAPM), the Arbitrage Pricing Theory (APT), or any other linear

pricing model, the AP decomposition yields several additional insights. In particular, a

portfolio’s expected return can be decomposed into three distinct components when returns

exhibit a linear factor structure: security selection, factor-timing ability, and risk premia.

The first two components may be interpreted as the result of active management, and the last

component is passive. This decomposition provides one explanation for the seemingly per-

sistent differences between long-only and alternative investments—the long-only constraint

imposes a limit to the amount of factor timing that can be accomplished, and this limit may

be a severe handicap in environments where factor risk premia change sign, i.e., periods of
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time-varying expected returns. A factor-based AP decomposition also addresses a recent

concern of many institutional investors, that they are paying hedge funds for alpha but are

getting beta instead. The relevant question is whether the beta exposure is time-varying or

fixed—if it is the former, then it may be considered a genuine source of active value, but if

it is the latter, it may be possible to achieve the same exposures in a more passive manner.

I begin in Section 2 with a brief review of the performance attribution literature, and

present the main results of the paper in Section 3. I provide several analytical examples in

Section 4, and then show how to implement the decomposition in Section 5. Section 6 con-

tains a detailed empirical example of the AP decomposition applied to a statistical arbitrage

strategy using daily data for NASDAQ size-deciles from January 2, 1990 to December 29,

1995. I conclude in Section 7.

2 Literature Review

The origins of performance attribution can be traced back to the Capital Asset Pricing Model

of Sharpe (1964) and Lintner (1965), who derived a linear relation between the excess return

of an investment and its systematic risk or market beta, i.e., the security market line:

Rpt − Rf = βp(Rmt − Rf) + εpt , E[εt|Rmt] = 0 . (1)

Departures from this linear relation were generically termed “alpha”,

Rpt − Rf = αp + βp(Rmt − Rf) + εpt (2)

and Treynor (1965), Sharpe (1966), and Jensen (1968, 1969) applied this measure to gauge

the economic value-added of mutual-fund managers. Since then, a variety of related measures

have been proposed, including

E[Rpt] − Rf

σp
= Sharpe Ratio (3)

E[Rpt] − Rf

βp
= Treynor Ratio (4)

αp

σ(εpt)
= Information Ratio (5)
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where σp and σ(εpt) denote the standard deviations of Rpt and the residual εpt in (2), re-

spectively. Graham and Harvey (1997) and Modigliani and Modigliani (1997) have derived

risk-adjusted transformations of these basic measures, and Sharpe (1992) has proposed a

constrained-regression framework for performing style analysis.

All of these measures are essentially static in nature because they are based on character-

istics of the marginal distributions of returns at a single date t, e.g., means, variances, and

contemporaneous covariances of the portfolio and market returns.1 Even Sharpe’s (1992)

regression-based decomposition—which is a conditional measure by construction—is static,

because the conditioning information is contemporaneous to portfolio returns at date t. None

of these measures captures the time-series dependence between dates t and t+1, which should

be central focus of any forecasting measure of investment skill.

In contrast to these static measures, Treynor and Mazuy (1966) were among the first

to propose a dynamic measure of active management. To pick up market-timing skills,

Treynor and Mazuy (1966) augmented the linear framework of (1) with a quadratic term

(Rmt − Rf )
2. Formally, this is still a contemporaneous regression, hence its parameters do

not involve any time-series properties, but the motivation—to detect asymmetries in up and

down markets—is distinctly dynamic.

In a recent comment on the fundamental indexation approach of Arnott, Hsu, and Moore

(2005), Treynor (2005) does focus on the covariance between portfolio weights and returns,

but only in the specific context of explaining the potential improvements of fundamental

indexation over market-capitalization weights. The AP decomposition described in this

paper provides a considerably more general framework for thinking about the benefits and

costs of any indexation algorithm.

A more explicit measure of market-timing skill is given by Merton (1981), Henriksson and

Merton (1981), and Henriksson (1984), who showed that perfect market-timing is equivalent

to a buy-and-hold investment in the market that is fully protected by put options on the

market with a riskless-rate strike. Imperfect market-timing skill may then be modeled as

1Of course, data spanning many dates are used to estimate these parameters, but the parameters them-
selves are single-point statistics, as opposed to multi-point statistics such as autocorrelations. Moreover,
the estimates for the standard performance metrics are almost always computed under the assumption that
the data are independently and identically distributed, which rules out any non-random-walk behavior, the
starting point of any active investment strategy.
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a partially insured investment in the market. Although this measure may also seem like

a static one because it involves parameters at a single point in time of the multivariate

distribution of market returns and corresponding put-option prices, it is, in fact, dynamic

due to the multi-period nature of options prices.2 In other words, the dynamics of market-

timing have been compressed into the put-option price, which is then used as the “numeraire”

for market-timing skill in Merton’s (1981) framework.

Finally, Grinold and Kahn (2000, Chapter 17) describe a bottoms-up approach to per-

formance attribution within a linear-factor model framework in which benchmark-timing

is a component. Although they do not focus explicitly on the covariance between portfolio

weights and returns, it is implicit in their time-series expression of “active benchmark timing

return”,3 and in a footnote, they acknowledge that the same type of decomposition can be

applied to individual securities.4

The measure of active management proposed in Section 3 is a more direct version of these

last two notions of market timing, in which each portfolio weight is viewed as a bet on the

future return of a given asset, and bets that yield positive profits over time, i.e., asset-timing

ability, are indications of investment skill.

3 The AP Decomposition

Consider a portfolio P invested in n securities indexed by i = 1, . . . , n, and defined by its

weights {ωit} in those securities at date t. Denote by Rpt the portfolio’s return between

dates t−1 and t, which is given by:

Rpt =
n∑

i=1

ωitRit (6)

where Rit is the date-t return of security i. Assuming that the means, variances, and covari-

ances of individual securities’ returns are well-defined, the main result of the paper follows

almost immediately from the definition of expected return, and is presented in Section 3.1.

2In particular, one of the option-pricing parameters is the maturity date, which renders the option price
a multi-point statistic.

3Equation 17.27 of Grinold and Kahn (2000, p. 504) is proportional to the covariance between factor
betas and returns, and is the sample counterpart to (17b) below.

4See footnote 9 of Grinold and Kahn (2000, p. 504). I am grateful to Lisa Goldberg for this citation.
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This very general result implies a new way of defining passive and active investing, which is

described in Section 3.2. And by imposing additional structure on asset returns—a linear

factor structure, in particular—we show in Section 3.3 that our decomposition provides a

new way of distinguishing between alpha and beta.

3.1 The General Result

We start with the following assumptions:

(A1) The returns {Rit} for each security i forms a stationary and ergodic stochastic process

with finite moments up to order 4.

(A2) Date-t portfolio weights {ωit} are stationary and ergodic stochastic processes that are

functions of state variables Xt−1.

Assumption (A1) is standard, and implies that the means, variances, and covariances for

all asset returns are well-defined, and that estimators of those parameters will have well-

behaved limiting distributions with finite variances, which is useful for conducting statistical

inferences.

Assumption (A2) requires more discussion. Beginning with Markowitz (1952), much

of the investments literature has assumed that portfolio weights are non-stochastic. The

motivation for this starting point is the focus on portfolio optimization, in which the portfolio

weights are the choice variables with respect to which a mean-variance objective function is

optimized. From this perspective, the expected return of a portfolio is simply a weighted

average of the expected returns of each component security, weighted by the fraction of the

portfolio devoted to that security.

But in practice, portfolio weights are not fixed parameters—they represent decisions

taken by a portfolio manager, and, as such, depend on a number of inputs. Therefore, from

an investor’s perspective, the statistical properties of a portfolio’s return is determined not

just by the return distributions of the component securities, but also by the characteristics of

the portfolio weights. In fact, the investor in an active investment product pays dearly for the

services of the portfolio manager, and is paying largely for that manager’s portfolio weights!

Accordingly, unless a manager’s portfolio weights depend on inputs that are non-stochastic
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and known to us, and we have complete knowledge of the functional relationship between

inputs and weights, we must view portfolio weights as random variables. And if portfolio

weights are random variables, it is not surprising that the stochastic relation between weights

and returns can have significant implications for the properties of their product, which we

shall demonstrate shortly in Proposition 1 below.

Assumption (A2) provides a simple but important set of restrictions for the kind of ran-

domness that a well-defined set of portfolio weights can exhibit. Perhaps the most important

restriction is the fact that the date-t weights {ωt} can depend on information only prior to

date t, otherwise unlimited arbitrage opportunities will abound. To see why, suppose that

we remove this restriction. Then consider the following portfolio:

ωit =
Max[0, Rit]∑n

j=1 Max[0, Rjt]
, Rpt =

n∑

i=1

ωitRit ≥ 0 (7)

which places positive weight at date t on only those securities with positive return at date

t. This is clearly an arbitrage if returns are not all degenerate. Assumption (A2) eliminates

such possibilities, and is equivalent to ruling out “look-ahead” bias in the construction of

portfolio weights.

Given these assumptions, we have the following general decomposition for a portfolio’s

expected returns:

Proposition 1 Under assumptions (A1)–(A2), the expected return of any portfolio P sat-

isfies the following decomposition:

E[Rpt] =
n∑

i=1

E[ωitRit] =
n∑

i=1

(
Cov[ωit, Rit] + E[ωit]E[Rit]

)
(8)

=
n∑

i=1

Cov[ωit, Rit] +
n∑

i=1

E[ωit]E[Rit] ≡ δp + νp (9)

where δp ≡
n∑

i=1

Cov[ωit, Rit] (Active Component)

νp ≡
n∑

i=1

E[ωit]E[Rit] (Passive Component)

θp ≡ δp

δp + νp
(Active Ratio) . (10)
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Proposition 1 is a simple decomposition of a portfolio’s expected return into two components:

the sum of the covariances between portfolio weights and returns, and the sum of the products

of expected portfolio weights and expected returns. Although this active/passive or AP

decomposition follows trivially from the definition of covariance, it has some surprisingly

useful implications for identifying the relative contributions of active and passive investment

management.

The motivation for attributing the covariance terms δp in (9) to active management is

the fact that, by definition, “active” implies a conscious decision on the part of the portfolio

manager to buy, sell, or avoid a security—summarized in the portfolio weights {ωit}—and

the impact of those decisions on a portfolio’s total expected return E[Rpt] is captured by the

covariances in (9). In particular, if a manager has positive weights when security returns

are positive and negative weights when security returns are negative on average, this implies

positive covariances between portfolio weights and returns, and will have a positive impact

on the portfolio’s expected return. In effect, the covariance term captures the manager’s

timing ability, asset by asset, and while perfect timing of the sort described in (7) is not

possible, imperfect timing certainly is.

However, there is another source of positive expected return that has nothing to do with

asset timing: the manager may be holding passive long positions in securities with positive

expected returns, and passive short positions in securities with negative expected returns.

For example, buy-and-hold investors in the S&P 500 should expect a positive expected

return over time because of the equity risk premium. This passive source of expected return

is captured by the second term νp in (9), which has no timing component whatsoever,

but involves only the first moments of the marginal distributions of returns and weights.

Similarly, a dedicated shortseller whose sole investment mandate is to identify and short

over-valued companies faces a significant challenge from the negative equity risk premium

implicit in any passive short equity position.

The distinction between timing and risk premia is more obvious from a slightly modified

version of (9):

E[Rpt] =
n∑

i=1

σ(ωit)σ(Rit)Corr[ωit, Rit] +
n∑

i=1

E[ωit]E[Rit] . (11)
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If the portfolio weights {ωit} are constant through time, it is difficult to argue that such a

portfolio is being actively managed, and (11) supports this intuition: a constant portfolio

implies zero variance for the portfolio weights, which implies no active component according

to (11). Nevertheless, constant portfolios can still generate positive expected returns simply

by holding securities with positive expected returns, as captured by the passive component.

But (11) shows that the larger the correlation between weights and returns, and the larger

the variances of returns and weights, the bigger the contribution from active management.

Alternatively, (11) implies that negative correlation between weights and returns de-

tracts from a portfolio’s expected return, and higher return- and weight-volatility makes

this worse. This suggests one possible approach to improving the active component of a

portfolio strategy: decreasing (increasing) the volatility of weights for those securities where

the correlations between weights and returns are negative (positive).

The quantity θp defined in (10)—which we call the “active ratio”—-provides a useful sum-

mary statistic for the degree to which a portfolio is actively managed. Unlike the traditional

static measures of active performance such as the Sharpe or information ratios (see Section

2), θp is dynamic, unit-free, and independent of the choice of benchmark. The dynamic na-

ture of θp is clear from the decomposition (11)—the time series properties of returns affect θp

directly, in contrast to static performance measures. The fact that θp is unit-free is obvious

from a simple dimensional analysis of this ratio: both the numerator and denominator are

defined as returns per unit time, hence the ratio is invariant to any unit of measurement.

In other words, if θp is estimated to be 28%, then this is the fraction of the portfolio’s re-

turn due to active management, irrespective of whether we estimate θp with daily, weekly,

or monthly data. Contrast this with the information ratio—if an investment has an IR of

0.28, it matters a great deal whether this is a daily, monthly, or annual estimate. Finally, θp

requires no benchmark for its definition, although certainly it is trivial to compute θp relative

to a benchmark by simply applying (9) to the excess returns of a portfolio. However, one of

the most important implications of (9) is that active investment management is not simply

adding value in excess of a passive benchmark, which can be done passively by taking on

non-benchmark factor exposures in a multi-factor world. We shall return to this issue in

Section 3.3 when we impose a linear factor structure on asset returns.
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3.2 A New Definition of Passive Investing

The AP decomposition (9) implies that constant portfolios have no active component, but

what about portfolios with time-varying weights that are traditionally considered to be

passive? For example, a value-weighted portfolio of all securities is clearly a passive portfolio,

yet the portfolio weights change according to the market values of the component securities

hence σ(ωit) is generally positive for all securities in this case. Does this portfolio’s expected

return have a non-zero active component?

The answer is no, as long as the individual securities’ returns are serially independent,

i.e., as long as the Random Walk Hypothesis holds for all securities. To see why, let Pit and

Sit denote the price and shares outstanding of asset i at date t, respectively, and observe

that the value-weighted portfolio is given by:

ωit =
Pit−1Sit−1∑n

j=1 Pjt−1Sjt−1
=

Pit−2(1 + Rit−1)Sit−1∑n
j=1 Pjt−2(1 + Rjt−1)Sjt−1

. (12)

which depends on returns at date t−1. If returns are serially independent, then the corre-

lations Corr[ωit, Rit] are all zero, hence the active component in (11) is zero despite the fact

that the volatilities of the weights are non-zero.

If, on the other hand, returns are not serially independent, then it is possible for the

AP decomposition to yield a non-zero active component to a buy-and-hold portfolio. This

is a sensible outcome because the presence of serial correlation implies that past returns

do contain forecast power for future returns; hence, a portfolio strategy with weights that

change as a function of past returns may benefit from (or be hurt by) such serial correlation.

This suggests a broader but more precise definition for a passive portfolio:

Definition 1 A passive portfolio is any portfolio with weights ωit that are uncorrelated with

its corresponding returns Rit for all i = 1, . . . , n.5

Under this definition, a portfolio is passive if its weights do not contain any information

related to future returns. Whether or not the portfolio is benchmarked is irrelevant. For

example, consider a portfolio with a market beta of 1.00, achieved through S&P 500 futures

5We define constant-weight portfolios to be uncorrelated with returns since their covariances with returns
are zero, even though in this case the correlation coefficient is undefined because the variance of the portfolio
weight is zero.
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contracts, that also happens to include a diversified buy-and-hold basket of commodities.6

The expected return of such a portfolio is likely to exceed the S&P 500 because of the positive

risk premium associated with the commodities component, but should the excess return be

attributed to active management? Using traditional performance measures, this portfolio

is likely to exhibit positive “alpha”, but the AP decomposition will yield a very different

conclusion.

The crucial characteristic of an active portfolio is the deliberate and successful use of

information for forecasting returns—this is usually what we have in mind when we speak of

“investment skill”. In the next section, we sharpen the distinction between alpha and other

sources of expected return by assuming a linear factor structure for individual asset returns.

3.3 Alpha vs. Beta

To distinguish explicitly between alpha and beta, we have to impose additional structure on

the return-generating processes for individual assets:

(A3) For each asset i, the return Rit satisfies a linear K-factor model:7

Rit = αi + βi1F1t + · · · + βiKFKt + εit (13)

0 = E[εit|F1t, . . . , FKt] (14)

where the factors Fkt are stationary and ergodic stochastic processes.

Although the linear K-factor structure is presented as an assumption, several authors have

derived theories to support such a specification, including Merton’s (1973) Intertemporal

Capital Asset Pricing Model, Ross’s (1976) Arbitrage Pricing Theory, and Lo and Wang’s

(2006) dynamic equilibrium model of returns and trading volume. However, in Assump-

tion (A3), we leave room for the presence of an intercept αi, which most other equilibrium

asset-pricing models rule out because the presence of non-zero αi may create arbitrage op-

6Commodities have historically exhibited very little correlation to the S&P 500, hence including a buy-
and-hold portfolio of commodities is unlikely to affect the overall market beta of the portfolio.

7For notational simplicity, we omit the riskless rate Rf from this specification, but without any loss in
generality, some readers may prefer to interpret both the asset return Rit and the factor returns Fkt as excess
returns, in excess of Rf .
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portunities.8 Since the AP decomposition is considerably more general than any particular

asset-pricing model or linear factor structure, for our purposes, we remain agnostic about

whether or not αi is zero for all assets, and merely leave it as a possibility within our frame-

work.

Under Assumption (A3), the return Rpt of an arbitrary portfolio of assets may be written

as:

Rpt =
n∑

i=1

ωitRit (15a)

=
n∑

i=1

ωitαi +

(
n∑

i=1

ωitβi1

)
F1t + · · · +

(
n∑

i=1

ωitβiK

)
FKt +

n∑

i=1

ωitεit (15b)

= αpt +
K∑

k=1

βpk,tFkt + εpt (15c)

where βpk,t ≡
n∑

i=1

ωitβik , αpt ≡
n∑

i=1

ωitαi . (15d)

Armed with this return decomposition, the corresponding AP decomposition for expected

returns follows immediately:

Proposition 2 Under Assumptions (A1)–(A3), the expected return of any portfolio P sat-

isfies the following decomposition:

E[Rpt] =
n∑

i=1

αiE[ωit] +
K∑

k=1

Cov[βpk,t, Fkt] +
K∑

k=1

E[βpk,t]E[Fkt] (16)

= Security Selection + Factor Timing + Risk Premia

where

Security Selection ≡
n∑

i=1

αiE[ωit] (17a)

Factor Timing ≡
K∑

k=1

Cov[βpk,t, Fkt] (17b)

Risk Premia ≡
K∑

k=1

E[βpk,t]E[Fkt] (17c)

8In particular, if the magnitudes of αi are too large, or there are too many assets with non-zero αi, then
it may be possible to construct a portfolio that has no factor risks and no idiosyncratic risk but a non-zero
intercept, which implies arbitrage.
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and

E[βpk,t] =
n∑

i=1

βikE[ωit] , k = 1, . . . , K (18a)

Cov[βpk,t, Fkt] =
n∑

i=1

βikCov[ωit, Fkt] , k = 1, . . . , K (18b)

Proposition 2 provides a more refined decomposition than Proposition 1, thanks to the

linear K-factor structure assumed in (A3). Expected returns are now the sum of three

components: a security-selection component (17a) that depends on the αi’s, a factor-timing

component (17b) that depends on the covariance between the portfolio betas and factors, and

a risk-premia component (17c) that represents the expected return from passive exposures

to factor risks. The first two components can be viewed as active sources of expected return,

with the third being the passive component as in Proposition 1.

This factor-based AP decomposition clarifies several issues surrounding the measurement

of active management. The first is the well-known implication of any multi-factor model that

expected returns in excess of a benchmark need not be due to investment acumen, but may

simply be passive exposures to non-market risk factors (see, for example, Merton, 1973 and

Ross, 1976). For example, if a portfolio with unit market-beta has a passive credit-factor beta

of 0.5 (in other words, no time-variation in this beta), then (17c) shows that this portfolio

will yield half the risk premium of the credit factor in addition to the equity risk premium.

Such outperformance can be achieved purely through passive means.

A second issue that Proposition 2 resolves is the historical disparity between the expected

returns of long-only investments and hedge funds. Some have argued that the distinction is

due to the outsize rewards from hedge-fund fee structures, which tend to draw the most tal-

ented portfolio managers from the long-only world, along with their alpha sources. Whether

or not this exodus of talent from mutual funds to hedge funds is real is debatable, but (16)

provides another explanation which is at least as compelling: the long-only constraint is a

severe handicap from the perspective of expected returns, because it hampers a portfolio

manager’s ability to engage in factor timing. By allowing weights to be negative, a hedge-

fund manager can create negative factor-betas for his portfolio, which will yield positive

expected returns if the corresponding factor risk-premia are negative. Long-only managers
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cannot easily do this if factor-betas are largely positive, hence one source of positive expected

return is unavailable to them. Therefore, we should not expect long-only managers to be

able to generate the level of expected returns that unconstrained managers can produce.

A third issue on which Proposition 2 sheds significant light is the recent concern of

many institutional investors that they are paying hedge funds for alpha but are getting

beta instead. Proposition 2 shows how to assess the value-added of hedge funds that make

directional bets: check the covariances of their portfolio betas with the factors. If hedge

funds possess factor-timing ability or “allocation alpha” (Leibowitz, 2005a,b), this should

be viewed as legitimate “alpha” or active management. But if the beta exposures are being

generated passively, i.e., not with covariances (17b) but with relatively stable weights in

(17c), then there are cheaper alternatives such as the “beta grazers” in Leibowitz (2005a,b),

the “swing assets” in Leibowitz and Bova (2005), or the futures-based hedge-fund beta

replication strategies described in Hasanhodzic and Lo (2006). This suggests the following

definition of passive investing in the context of a linear K-factor model:

Definition 2 A portfolio is said to have passive factor exposure to factor k if its portfolio

beta βpk,t is uncorrelated with the factor Fkt.

Note that Definition 2 leaves open the possibility that a portfolio is passive with respect

to one factor but active with respect to another. This is particularly important for the

hedge-fund industry which is extraordinarily heterogeneous, and where highly specialized

investment expertise can and should thrive.

Of course, passive beta exposures to non-traditional betas such as credit, liquidity, volatil-

ity, and yield-curve twists may be more difficult to generate and manage for a typical pension

plan sponsor than S&P 500 beta, in which case higher management fees may be justifiable.

But unless the manager is providing some form of active management—unique sources of

αi’s or factor-timing ability—there should be downward pressure on the corresponding man-

agement fees, and certainly incentive fees cannot be justified.

One final insight provided by Proposition 2 is that investment expertise can manifest

itself in two distinct formats: identifying untapped sources of expected return (the αi’s) and

creating additional expected return through factor timing (the time-varying βpk,t’s). Even if

all αi’s are zero, as some academic studies claim, there can still be substantial value-added
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from active management as long as risk premia vary over time and as functions of market

conditions.

4 Some Analytical Examples

In this section I provide three examples of the AP decomposition where active and passive

components can be evaluated analytically. Section 4.1 contains a simple numerical example

that highlights the basic computations involved in the decomposition. In Section 4.2, I

consider mean-reversion and momentum strategies, and in Section 4.3 I provide an analysis

of a stop-loss strategy.

4.1 A Numerical Example

Consider a portfolio of two assets, one which yields a monthly return that alternates between

1% and 2% (Asset 1) and the other which yields a fixed monthly return of 0.15% (Asset 2).

Let the weights of this portfolio, called A1, be given by 75% in Asset 1 and 25% in Asset 2.

The chart and table in Figure 1 illustrates the dynamics of this portfolio over a 12-month

period, where the expected return of the portfolio is 1.16% per month, none of which is due

to the active component. Therefore θp =0% in this case.

Now consider portfolio A2, which differs from A1 only in that the portfolio weight for

Asset 1 alternates between 50% and 100% as Asset 1’s return alternatives between 1% and

2% (see the chart in Figure 2). In this case, the total expected return is 1.29% per month,

of which 0.13% is due to the positive correlation between the portfolio weight for Asset 1

and its return. This yields an active ratio θp of 9.71%. Note that this ratio does not depend

on the sampling interval of the returns, in contrast to the figures 1.29% and 0.13%, both of

which are monthly returns.

Finally, consider a third portfolio A3 which also has alternating weights for Asset 1, but

exactly in the opposite direction to Asset 1’s returns: when the return is 1%, the portfolio

weight is 100%, and when the return is 2%, the portfolio weight is 50%. This is obviously

counterproductive, and Figure 3 confirms this intuition. Portfolio A3 loses 0.13% per month

from its active component, and its active ratio θp =−12.05%.

Note that in all three cases, the passive components are identical at 1.16% per month
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Month ωωωω1 R1 ωωωω2 R2 Rp

1      75%   1.00%  25%   0.15%  0.79%  
2      75%   2.00%  25%   0.15%  1.54%  
3      75%   1.00%  25%   0.15%  0.79%  
4      75%   2.00%  25%   0.15%  1.54%  
5      75%   1.00%  25%   0.15%  0.79%  
6      75%   2.00%  25%   0.15%  1.54%  
7      75%   1.00%  25%   0.15%  0.79%  
8      75%   2.00%  25%   0.15%  1.54%  
9      75%   1.00%  25%   0.15%  0.79%  

10      75%   2.00%  25%   0.15%  1.54%  
11      75%   1.00%  25%   0.15%  0.79%  
12      75%   2.00%  25%   0.15%  1.54%  

Mean: 75.00%  1.50%  25.00%  0.15%  1.16%  
SD: 0.00%  0.52%  0.00%  0.00%  0.39%  
Corr[ωωωω,R]:

Cov[ωωωω,R]: + = 0.00%  
E[ωωωω]E[R]: + = 1.16%  

Total: 1.16%  

θ:θ:θ:θ: 0.00%  

Strategy A1
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0.04%  

0%   

20%   

40%   

60%   

80%   

100%   

1      2      3      4      5      6      7      8      9      10     11     12     

P
or

tf
ol

io
 W

ei
gh

t 1

0.00%  

0.50%  

1.00%  

1.50%  

2.00%  

2.50%  

A
ss

et
 R

et
ur

n 
1

Weight 1 Asset Return 1

Figure 1: The expected return of a constant portfolio does not contain any active component.
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Month ωωωω1 R1 ωωωω2 R2 Rp

1      50%   1.00%  50%   0.15%  0.58%  
2      100%   2.00%  0%   0.15%  2.00%  
3      50%   1.00%  50%   0.15%  0.58%  
4      100%   2.00%  0%   0.15%  2.00%  
5      50%   1.00%  50%   0.15%  0.58%  
6      100%   2.00%  0%   0.15%  2.00%  
7      50%   1.00%  50%   0.15%  0.58%  
8      100%   2.00%  0%   0.15%  2.00%  
9      50%   1.00%  50%   0.15%  0.58%  

10      100%   2.00%  0%   0.15%  2.00%  
11      50%   1.00%  50%   0.15%  0.58%  
12      100%   2.00%  0%   0.15%  2.00%  

Mean: 75.00%  1.50%  25.00%  0.15%  1.29%  
SD: 26.11%  0.52%  26.11%  0.00%  0.74%  
Corr[ωωωω,R]:

Cov[ωωωω,R]: + = 0.13%  
E[ωωωω]E[R]: + = 1.16%  

Total: 1.29%  

θ:θ:θ:θ: 9.71%  

Strategy A2
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Figure 2: The portfolio weights are positively correlated with returns, which adds value to
the portfolio and yields a positive active component.
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Month ωωωω1 R1 ωωωω2 R2 Rp

1      100%   1.00%  0%   0.15%  1.00%  
2      50%   2.00%  50%   0.15%  1.08%  
3      100%   1.00%  0%   0.15%  1.00%  
4      50%   2.00%  50%   0.15%  1.08%  
5      100%   1.00%  0%   0.15%  1.00%  
6      50%   2.00%  50%   0.15%  1.08%  
7      100%   1.00%  0%   0.15%  1.00%  
8      50%   2.00%  50%   0.15%  1.08%  
9      100%   1.00%  0%   0.15%  1.00%  

10      50%   2.00%  50%   0.15%  1.08%  
11      100%   1.00%  0%   0.15%  1.00%  
12      50%   2.00%  50%   0.15%  1.08%  

Mean: 75.00%  1.50%  25.00%  0.15%  1.04%  
SD: 26.11%  0.52%  26.11%  0.00%  0.04%  
Corr[ωωωω,R]:

Cov[ωωωω,R]: + = -0.13%  
E[ωωωω]E[R]: + = 1.16%  

Total: 1.04%  

θ:θ:θ:θ: -12.05%  

Strategy A3
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Figure 3: The portfolio weights are negatively correlated with returns, which subtracts value
to the portfolio and yields a negative active component.
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because the average weight for each asset was the same across all three portfolios. The only

differences among A1, A2, and A3 were the dynamics of the portfolio weights, and these

differences gave rise to different values for the active component δp and the active ratio θp.

4.2 Mean Reversion and Momentum Strategies

Consider a simple asset-allocation example where one asset is the risk-free asset that yields

Rf and the other is a risky asset with return Rt that satisfies a stationary autoregressive

process with one lag or AR(1):

Rt = µ + ρ(Rt−1 − µ) + εt , εt IID WN(0, σ2
ε ) (19)

ωt = γ1 + γ2 Rt−1 (20)

Rpt = ωt Rt + (1 − ωt) Rf (21)

The asset-allocation strategy (20) is a simple linear function of last period’s return plus

a constant, and covers two important cases: a mean-reversion strategy (γ2 < 0), and a

momentum strategy (γ2 > 0). The expected return of this strategy can be easily derived as:

E[Rpt] = Cov[ωt, Rt] + E[ωt]E[Rt] + (1 − E[ωt]) Rf (22a)

= γ2ρVar[Rt] + (γ1 + γ2µ)µ + (1 − γ1 − γ2µ)Rf . (22b)

This expression shows that the passive component is a weighted average of the two assets

using the expected values of the weights ωt and 1 − ωt. On the other hand, the active

component is a function of γ2, ρ, and the return variance of the risky asset. These three

parameters represent the sum total of the information content in the strategy (20). If γ2 is of

the same sign as ρ, then the active component is positive—the strategy will be a momentum

strategy when returns exhibit momentum (ρ > 0) and will be a mean-reversion strategy

when returns exhibit mean reversion (ρ < 0). If, on the other hand, γ2 is of opposite sign

to ρ, then the active component will subtract value because the strategy will be exactly out

of phase with the risky asset. And as the variance of Rt increases the active component

becomes larger in absolute value, magnifying both positive and negative timing ability.
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4.3 A Stop-Loss Policy

Suppose that a portfolio manager implements a stop-loss policy on an existing portfolio

strategy with return Rt so that if the strategy’s return falls below a threshold ζ at date t−1,

the entire portfolio will be invested in the riskfree asset at date t, and if the strategy’s return

is greater than or equal to ζ, the entire portfolio will be invested in the strategy. Assuming

that the strategy’s return-generating process is an AR(1), we can specify the dynamics Rpt

of the combined portfolio-plus-stop-loss strategy as:

Rt = µ + ρ(Rt−1 − µ) + εt , εt IID N (0, σ2
ε ) (23)

ωt =
{

1 if Rt−1 > ζ
0 if Rt−1 ≤ ζ

(24)

Rpt = ωt Rt + (1 − ωt) Rf (25)

where we have assumed that εt is Gaussian so that we can solve for expected returns in

closed form. Under these specifications, the expected return of Rpt is given by:

E[Rpt] = Cov[ωt, Rt] + E[ωt]E[Rt] + (1 − E[ωt]) Rf

= ρσφ
(

α − µ

σ

)
+ µ

(
1 − Φ

(
α − µ

σ

))
+ Rf Φ

(
α − µ

σ

)
(26)

The first term in (26) is the active component, and the second two terms are the passive

component. As long as ρ>0, implying momentum for the risky asset, the active component

will increase the expected return of the portfolio. This result makes intuitive sense because

the stop-loss policy (24) activates when past returns fall below ζ, and a lower past return

implies lower future returns when ρ ≥ 0. If, however, ρ < 0, then the stop-loss policy (24)

becomes counterproductive because returns are mean-reverting, hence the time to switch to

the riskless asset is after a very large positive return in the most recent past.

Table 1 provides a numerical illustration of the AP decomposition for various values of

the two parameters ζ and ρ. When ρ=−25%, the active component is negative regardless of

the threshold ζ, although higher values of ζ make the active component more costly because

more upside is eliminated by the stop-loss policy. When ρ = 0, the active component is

0 because returns follow a random walk in this case, and any portfolio strategy based on
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E[Rpt] Active Passive %Active E[ωωωωt] 1-E[ωωωωt]

-1.0%   -25%   1.6%   -6.6%   8.1%   -423.1% 62.5%   37.5%   
-0.5%   -25%   1.2%   -6.7%   8.0%   -547.6% 59.1%   40.9%   
0.0%   -25%   0.9%   -6.8%   7.8%   -720.9% 55.7%   44.3%   
0.5%   -25%   0.7%   -6.9%   7.6%   -962.5% 52.3%   47.7%   
1.0%   -25%   0.5%   -6.9%   7.4%   -1290.0% 48.8%   51.2%   

-1.0%   0%   8.1%   0.0%   8.1%   0.0% 62.5%   37.5%   
-0.5%   0%   8.0%   0.0%   8.0%   0.0% 59.1%   40.9%   
0.0%   0%   7.8%   0.0%   7.8%   0.0% 55.7%   44.3%   
0.5%   0%   7.6%   0.0%   7.6%   0.0% 52.3%   47.7%   
1.0%   0%   7.4%   0.0%   7.4%   0.0% 48.8%   51.2%   

-1.0%   25%   14.7%   6.6%   8.1%   44.7% 62.5%   37.5%   
-0.5%   25%   14.7%   6.7%   8.0%   45.8% 59.1%   40.9%   
0.0%   25%   14.6%   6.8%   7.8%   46.8% 55.7%   44.3%   
0.5%   25%   14.5%   6.9%   7.6%   47.5% 52.3%   47.7%   
1.0%   25%   14.3%   6.9%   7.4%   48.1% 48.8%   51.2%   

-1.0%   50%   21.3%   13.1%   8.1%   61.8% 62.5%   37.5%   
-0.5%   50%   21.4%   13.5%   8.0%   62.8% 59.1%   40.9%   
0.0%   50%   21.5%   13.7%   7.8%   63.7% 55.7%   44.3%   
0.5%   50%   21.4%   13.8%   7.6%   64.4% 52.3%   47.7%   
1.0%   50%   21.3%   13.8%   7.4%   65.0% 48.8%   51.2%   

Annualized
αααα ρρρρ

Table 1: Measures of the value of a stop-loss policy for a portfolio with monthly returns
that follow an AR(1), and monthly parameter values Rf = 5%/12, E[Rt] = 10%/12, and
Var[Rt] = (20%)2/12.
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prior returns will be uncorrelated with current returns. And when ρ is positive, the active

component becomes positive as well, and as predicted by (26), the larger the threshold and

the larger the ρ, the more valuable is the stop-loss and the larger is the active ratio.

See Kaminski and Lo (2007) for a more detailed analysis of the performance of stop-loss

policies.

5 Implementing the AP Decomposition

The AP decomposition in Section 3 is a simple function of means, variances, and covariances

of portfolio weights and returns, hence its implementation is a straightforward exercise in

estimating unconditional first and second moments. In fact, in Section 5.1 we show that the

properly defined sample moments of portfolio weights and returns are related in exactly the

same way as their population counterparts in (9), hence the decomposition must hold exactly

as an identity when applied to the data. However, there is one subtlety in implementing

(9) that is not addressed by the population version, which is the selection of the sampling

interval, and this is considered in Section 5.3.

5.1 Population vs. Sample Moments

Assumptions (A1) and (A2) are generally sufficient to ensure that the usual sample means,

variances, and covariances of portfolio weights and returns will be well-behaved estimators

for their population values (see, for example, White, 1984). Therefore, implementing the

fundamental decomposition (9) involves nothing more challenging than estimating first and

second moments. Moreover, the fact that sample moments are related to each other in the

same way that population moments are related makes the application of (9) to the data

almost trivial. For example, consider the sample covariance between portfolio weights and

returns for asset i:

1

T

T∑

t=1

(ωit − ωi)(Rit − Ri) =
1

T

T∑

t=1

(
ωitRit − ωiRit − ωitRi + ωiRi

)
(27a)

=
1

T

T∑

t=1

ωitRit − ωi

T

T∑

t=1

Rit − Ri

T

T∑

t=1

ωit + ωiRi (27b)

=
1

T

T∑

t=1

ωitRit − ωiRi . (27c)

22



Therefore,

1

T

T∑

t=1

ωitRit =
1

T

T∑

t=1

(ωit − ωi)(Rit − Ri) + ωiRi (28)

which is the sample-moment counterpart to (9) for a single asset i. Repeated applications

of (27) to the sample average of a portfolio will result in the sample version of (9), hence

the AP decomposition must also hold in-sample. With properly defined first and second

moments, (9) is an identity for sample moments as well as for population moments.

However, there is an even simpler approach to estimating the AP decomposition that

eliminates the need for second moments altogether, and that is to infer the active component

by subtracting the passive component from the total expected return:

δp = E[Rpt] − νp . (29)

Because the right side of (29) involves only first moments, the active component δp and the

active ratio θp may be computed solely from the average weights and average returns of the

portfolio, hence:

δ̂p =
1

T

T∑

t=1

Rpt −
n∑

i=1

ωiRi (30)

where ωi ≡ 1

T

T∑

t=1

ωit , Ri ≡ 1

T

T∑

t=1

Rit

θ̂p =
δ̂p

1
T

∑T
t=1 Rpt

. (31)

In particular, it is not necessary for a manager to provide position-level transparency to give

investors a clear sense of the value of his investment process. This is a particularly important

characteristic of the fundamental decomposition (9) when applied to hedge-fund strategies

because of secrecy surrounding such strategies. Few hedge-fund managers should balk at

divulging average weights and returns, unless, of course, the manager’s average weights do

not vary much over time, in which case the investors should reconsider paying hedge-fund

fees to such a manager.
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5.2 GMM Estimation

The simplicity of the estimators (30) and (31) may suggest that statistical inference is not

needed, but there is still the issue of assessing the accuracy of these estimators to address.

Fortunately, given Assumptions (A1) and (A2), it is possible to derive the asymptotic dis-

tributions of (30) and (31) under fairly general conditions. These results are summarized in

the following proposition (see the Appendix for a proof):

Proposition 3 Under (A1) and (A2), the active component δp and active ratio θp of any

portfolio P may be estimated consistently by their sample counterparts (30) and (31), and

both estimators are asymptotically normal with variances that may be consistently estimated

via the Generalized Method of Moments.

5.3 The Sampling Interval

One important practical issue surrounding the implementation of the AP decomposition is

the choice of sampling interval for weights and returns. This obviously does not affect the

population version of the decomposition, but is of critical importance in practical applica-

tions. However, even for the population version, the relevance of the sampling interval can

be understood in the context of time aggregation. Consider a portfolio strategy in which

the weights {ωit(Xt−1)} vary each period, but we only observe portfolio weights and returns

every q periods. If we now apply the AP decomposition to this subset of weights and returns,

would we arrive at the same values for δp and νp, appropriately scaled? The answer is no. To

see why, we must first define the precise set of observables at each q-period interval, and then

ask whether these observables satisfy the same relation (9) as their one-period counterparts.

First consider aggregating the portfolio return Rpt over q periods and ignore the effects

of compounding for simplicity:

Rpt =
n∑

i=1

ωitRit (32)

Rpτ (q) =
τq∑

t=(τ−1)q+1

Rpt =
τq∑

t=(τ−1)q+1

n∑

i=1

ωitRit (33)

=
n∑

i=1

τq∑

t=(τ−1)q+1

ωitRit . (34)
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Then the expected value of the q-period portfolio return is given by:

E[Rpτ (q)] =
n∑

i=1

τq∑

t=(τ−1)q+1

E[ωitRit] (35)

=
n∑

i=1

q E[ωitRit] from stationarity (36)

=
n∑

i=1

q Cov[ωit, Rit] +
n∑

i=1

q E[ωit]E[Rit] . (37)

The equality (37) shows that (9) aggregates linearly over time, so that the q-period expected

return of a portfolio is equal to the sum of q times the active component and q times the

passive component.

However, the question we started with is whether (9) remains the same with q-period

inputs, and (37) has q-period returns only on the left side. To address our original problem,

let us rewrite the right side of (33) with q-period variables as well:

Rpτ(q) =
n∑

i=1

τq∑

t=(τ−1)q+1

ωit
Rit

Riτ (q)
Riτ (q) (38)

=
n∑

i=1

ωiτ (q) Riτ(q) where ωiτ (q) ≡
τq∑

t=(τ−1)q+1

ωit
Rit

Riτ (q)
. (39)

In (39), the q-period portfolio return Rpτ (q) is shown to be equal to the product of q-period

asset returns Riτ (q) and q-period weights ωiτ (q), but note that these weights are not simply

averages of ωit over q periods, but are return-weighted averages. In fact, the only set of

q-period portfolio weights that, when multiplied by q-period asset returns, will yield the

same q-period portfolio return as the time-aggregated portfolio return Rpτ (q) is the return-

weighted average defined in (39).

Now we are prepared to answer the question we first posed regarding the effect of time

aggregation on (9). Suppose we apply the decomposition to q-period weights and returns—

will we arrive at a scaled version of the one-period decomposition? The q-period version is

given by:

E[Rpτ (q)] =
n∑

i=1

E[ωiτ (q) Riτ(q)] (40)
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=
n∑

i=1

Cov[ωiτ (q), Riτ (q)] +
n∑

i=1

E[ωiτ (q)]E[Riτ (q)] (41)

and from (41) it is easy to see that the q-period version does not reduce to q times the

one-period version as in (39). In particular, the covariances of q-period weights and returns

involve complex cross-products of one-period weights and returns within the q-period inter-

val, and even the expected value of q-period weights involve co-moments between weights

and returns across the interval. In fact, much of the complexity of (41) is an artefact of the

time aggregation, and has little to do with the underlying investment process.

(a) (b)

(c)

Figure 4: Illustration of all possible configurations of sampling and decision intervals: (a)
matched sampling and decision intervals; (b) more frequent sampling intervals; (c) less fre-
quent sampling intervals.

For this reason, it is critical that the sampling interval be at least as fine as the finest

decision interval of the investment process (see Figures 4a and b). If portfolio decisions are

made on a weekly basis, then (9) must be implemented with data sampled at least once a

week. If, on the other hand, the strategy employs daily information, then weekly data will

not suffice (see Figure 4c).

Sampling more finely than the finest decision interval is always acceptable because an

unchanged portfolio weight may always be viewed as an active decision to maintain a position,
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i.e., “let it ride”. Although Warren Buffett changes his portfolio weights rather slowly

over time, this is quite deliberate and not due to lethargy or inertia. However, one useful

implication of this longer decision interval is that we are unlikely to be misled by applying

our decomposition to the monthly returns and weights of his portfolio, whereas the same

cannot be said for the legendary day-trader Steven Cohen of SAC Capital.

Moreover, random shifts in portfolio weights in between decision intervals may add noise

to the estimates (30) and (31), but will not affect the consistency of the estimators since, by

definition, the noise is independent of returns (if they are correlated with returns, then they

are considered part of the information in portfolio weights and will count towards the active

component). Therefore, more finely sampled data is always preferred, but at a minimum,

the data must be sampled at least as finely as the investment decision interval, otherwise

the AP decomposition may not accurately reflect the true active and passive contributions

of the manager.

6 An Empirical Application

To develop a better understanding of the characteristics of the AP decomposition, we apply

our framework to a specific market-neutral equity trading strategy that, by construction,

is particularly dynamic. The strategy, first proposed by Lo and MacKinlay (1990), is an

example of a “statistical arbitrage” program, consisting of buying losers and selling win-

ners in proportion to their under- or over-performance relative to the cross-section mean.

Specifically, let:

ωit = − 1

n
(Rit−1 − Rt−1) , Rt−1 ≡ 1

n

n∑

i=1

Rit−1 (42)

which implies that the weights sum to 0 at each date t, hence these are arbitrage portfolios.

The fact that these weights are so directly tied to returns implies very active trading, and

the fact that the weights sum to 0 implies very little market-beta exposure. These two

implications suggest that much of this portfolio’s return should be due to active management,

and that θ should be quite large.
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Month ωωωω1 R1 ωωωω2 R2 Rp

1      50%   1.00%  50%   0.15%  0.58%  
2      50%   2.00%  50%   0.15%  1.08%  
3      50%   1.00%  50%   0.15%  0.58%  
4      50%   2.00%  50%   0.15%  1.08%  
5      50%   1.00%  50%   0.15%  0.58%  
6      50%   2.00%  50%   0.15%  1.08%  
7      50%   1.00%  50%   0.15%  0.58%  
8      100%   2.00%  0%   0.15%  2.00%  
9      100%   1.00%  0%   0.15%  1.00%  

10      100%   2.00%  0%   0.15%  2.00%  
11      100%   1.00%  0%   0.15%  1.00%  
12      100%   2.00%  0%   0.15%  2.00%  

Mean: 70.83%  1.50%  29.17%  0.15%  1.13%  
SD: 25.75%  0.52%  25.75%  0.00%  0.57%  
Corr[ωωωω,R]:

Cov[ωωωω,R]: + = 0.02%  
E[ωωωω]E[R]: + = 1.11%  

Total: 1.13%  

θ:θ:θ:θ: 1.85%  

Strategy A4
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Figure 5: Sampling more frequently than the decision interval does not create any biases in
the active ratio estimator.
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6.1 Trading NASDAQ Size-Deciles

We apply this strategy to the daily returns of the five smallest size-decile portfolios of all

NASDAQ stocks, as constructed by the University of Chicago’s Center for Research in Se-

curity Prices (CRSP), from January 2, 1990 to December 29, 1995.9 Table 2 reports the

cross-autocorrelations of these five decile returns, and the lead/lag pattern that emerges

from this table—the fact that larger-decile returns today are more highly correlated with

smaller-decile returns tomorrow than smaller-decile returns today with larger-decile returns

tomorrow—underscores the likely profitability of the contrarian strategy (42). Of course,

trading NASDAQ size-deciles is obviously unrealistic in practice, but our purpose is to

illustrate the performance of our expected-return decomposition (9), not to derive an imple-

mentable trading strategy.

R1t+1 R2t+1 R3t+1 R4t+1 R5t+1

R1t 10.0%  21.5%  15.8%  18.1%  16.7%  
R2t 23.4%  15.4%  20.2%  19.7%  15.8%  
R3t 26.2%  25.0%  15.2%  23.9%  21.6%  
R4t 25.4%  27.0%  24.3%  18.2%  18.7%  
R5t 25.4%  26.6%  26.5%  26.2%  19.4%  

Table 2: First-order cross-autocorrelation matrix of the daily returns of the five smallest
CRSP-NASDAQ size deciles, from January 2, 1990 to December 29, 1995. Decile 1 is the
smallest-capitalization decile.

Figure 6 illustrates the remarkable performance of the contrarian strategy (42) over the

1990 to 1995 sample period, and Table 3 contains summary statistics for the daily returns of

the five deciles and the strategy. With an annualized average return of 31.4% and standard

deviation of 7.9%, this strategy’s performance is considerably better than that of any of the

five deciles, which is one indication that active management is playing a significant role in

this case.

This intuition is confirmed by the AP decomposition of the strategy’s expected return

into active and risk-premia components in Table 4. On an annualized basis, the active

component yields 32% which exceeds the strategy’s total expected return of 31.4%, implying

9We selected this time period purposely because of the emergence of day-trading in the early 1990’s, an
important source of profitability for statistical arbitrage strategies.
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Figure 6: Cumulative return of a daily mean-reversion strategy of Lo and MacKinlay (1990)
applied to the five smallest CRSP-NASDAQ size deciles from January 2, 1990 to December
29, 1995.

an active ratio of 101.9% and a slightly negative risk-premia component. In this case, more

than all of the strategy’s expected return is coming from active management, and the risk-

premia component is subtracting value. The explanation for this rather unusual phenomenon

was provided by Lo and MacKinlay (1990, Section 5.3.1), who observed that because the

contrarian strategy holds losers and shorts winners, on average it will be buying the low-mean

assets and shorting the high-mean assets. Therefore, the risk-premia component—which is

the sum of average portfolio weights multiplied by average returns—will consist of positive

average weights for low-mean stocks and negative average weights for high-mean stocks for

this strategy. Fortunately, the positive correlation between weights and returns is more than

sufficient to compensate for the negative risk-premia, as Table 4 confirms.

6.2 Daily vs. Monthly Transparency

To illustrate the importance of the sampling interval in the measurement of the active ratio,

suppose that we are given only the following monthly information for this daily strategy:

month-end portfolio weights, and the monthly returns of each of the five deciles. Table 5

shows that the strategy’s expected return cannot be correctly computed from this information
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Statistic Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Rpt

Mean*250 27.4%  17.5%  14.0%  13.7%  12.8%  31.4%  
SD*sqrt(250) 12.2%  9.8%  8.9%  9.1%  9.5%  7.9%  
SR*sqrt(250) 2.25    1.78    1.58    1.50    1.35    3.95    
Min -2.9%  -2.7%  -2.7%  -3.3%  -3.5%  -2.2%  
Median 0.1%  0.1%  0.1%  0.1%  0.1%  0.1%  
Max 6.7%  3.6%  2.0%  2.1%  2.3%  2.4%  
Skew 0.6 0.0 -0.5 -0.7 -0.9 -0.1
XSKurt 5.1 2.4 2.1 3.1 3.9 1.7
ρρρρ1 10.0%  15.4%  15.2%  18.2%  19.4%  4.7%  
ρρρρ2 10.3%  7.7%  10.1%  13.9%  10.5%  0.9%  
ρρρρ3 5.7%  4.2%  7.5%  9.2%  11.0%  7.5%  

Table 3: Summary statistics of the daily returns of the five smallest CRSP-NASDAQ size
deciles, and the daily returns of a mean-reversion strategy of Lo and MacKinlay (1990)
applied to those decile returns, from January 2, 1990 to December 29, 1995. Decile 1 is the
smallest-capitalization decile.

Statistic Estimate SE t-stat

Portfolio Mean * 250 31.4%  0.3%  91.00    
Risk Premia * 250 -0.6%  3.5%  -0.17    
Active Component * 250 32.0%  3.5%  9.24    
Active Ratio 101.9%  0.3%  354.40    

Portfolio Mean * 12 -4.0%  1.0%  -3.98    
Risk Premia * 12 0.1%  4.0%  0.03    
Active Component * 12 -4.1%  4.1%  -1.01    
Active Ratio 102.6%  11.8%  8.66    

Daily

Monthly

Table 4: GMM estimates of the active ratio θ (in percent) of the daily and monthly returns
of a mean-reversion strategy of Lo and MacKinlay (1990) applied to the five smallest CRSP-
NASDAQ size-decile returns, from January 2, 1990 to December 29, 1995. Daily estimates
employ a truncation lag of 6 in the computation of the Newey-West asymptotic standard
errors, and monthly estimates employ a truncation lag of 3.
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because much of the return comes from daily bets that are not captured by month-end

portfolio weights. The decomposition of the incorrect expected return of −4.0% is reported

in the lower panel of Table 4 and also has no bearing to the daily strategy—the estimates

imply that the active component yields −4.1%, which is clearly false. By observing only

month-end weights and cumulative returns, we have no way of inferring the profitability of

decisions made at a daily frequency.

Statistic Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Rpt

Mean*12 27.5%  17.4%  13.9%  13.7%  12.8%  -4.0%  
SD*sqrt(12) 20.6%  17.7%  15.6%  15.0%  15.9%  8.8%  
SR*sqrt(12) 1.34    0.98    0.89    0.91    0.80    -0.45    
Min -8.0%  -11.3%  -9.0%  -9.7%  -11.4%  -6.6%  
Median 1.6%  1.0%  1.2%  1.0%  1.5%  -0.5%  
Max 26.4%  21.5%  18.1%  16.8%  16.2%  9.7%  
Skew 1.2 0.9 0.7 0.5 0.1 1.2
XSKurt 3.3 3.0 2.1 2.0 1.2 4.7
ρρρρ1 36.4%  43.7%  43.2%  41.4%  45.0%  8.2%  
ρρρρ2 17.3%  16.6%  18.9%  10.1%  13.7%  15.7%  
ρρρρ3 -5.6%  -2.7%  -3.1%  -7.8%  -7.0%  -3.2%  

Table 5: Summary statistics of the monthly returns of the five smallest CRSP-NASDAQ
size deciles, and the monthly returns of a mean-reversion strategy of Lo and MacKinlay
(1990) applied to those decile returns, from January 1990 to December 1995. Decile 1 is the
smallest-capitalization decile.

7 Conclusion

The investment management industry has developed a series of measures to gauge the per-

formance of portfolio managers. Most of these measures are based on characteristics of the

marginal distributions of asset and portfolio returns at a single point in time. Also, the

typical statistical procedures used to estimate these characteristics implicitly assume that

the data are independently and identically distributed, which eliminates any possibility of

dynamic effects such as intertemporal correlations and forecast power.

In contrast to these static measures, the AP decomposition and active ratio—which are

based on the definition of covariance—are multi-point statistics that capture the very essence
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of active management: time-series predictability. A successful portfolio manager is one whose

decisions are more often right than wrong, but “right” and “wrong” have specific meanings in

this context: positive correlation between portfolio weights and returns. Given that portfolio

weights are functions of a manager’s prior and proprietary information, positive correlation

between weights and returns is a clear indication of forecast power and, consequently, active

investment skills.

This definition of active management provides a natural dichotomy between active and

passive investing. A passive portfolio has no forecast power, and can therefore be imple-

mented more easily than an active portfolio. This is a sensible generalization of the standard

definition of a passive portfolio, i.e., a constant mix of liquid benchmarks.

If asset returns are assumed to satisfy a linear multi-factor model, the AP decomposition

shows that a portfolio’s expected returns can decomposed into three components: deviations

from the linear factor model or “alpha”, positive correlation between portfolio betas and

factor realizations or “factor timing”, and static factor exposures times risk premia. This

decomposition provides a clear and simple framework for resolving the question of whether

hedge-fund investors are paying for alpha and getting beta from their investments. Moreover,

the AP decomposition provides one explanation for the historical differences in performance

between long-only and long/short portfolios: the long-only restriction severely limits a man-

ager’s factor-timing ability, which can be a substantial performance drag during periods

where risk premia change sign.

Finally, because the AP decomposition is an identity in any given sample of data, it can

be used to conduct detailed performance attributions, factor by factor, and asset by asset.

By separating the active and passive components of a portfolio, it should be possible to

study and improve the performance of both.
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A Appendix

Throughout the Appendix, the following conventions are maintained: (1) all vectors are

column vectors unless otherwise indicated; (2) vectors and matrices are always typeset in

boldface, i.e., X and µ are scalars and X and µ are vectors or matrices.

A.1 GMM Estimators for the AP Decomposition

Denote by Xt the vector of period-t portfolio weights and returns [ ω1t · · · ωnt R1t · · · Rnt ]′,

and let {Xt} be a stochastic process that satisfies the following conditions:

(H1) { Xt : t ∈ (−∞,∞)} is stationary and ergodic.

(H2) γo ∈ Γ is an open subset of <k.

(H3) ∀γ ∈ Γ, ϕ(·, γ) and ϕγ(·, γ) are Borel-measurable and ϕγ(X, ·) is continuous on

Γ for all X.

(H4) ϕγ is first-moment continuous at γo, E[ϕγ(X, ·)] exists, is finite, and is of full rank.

(H5) Let ϕt ≡ ϕ(Xt, γo) and

vj ≡ E[ϕ0|ϕ−1, ϕ−2, . . .] − E[ϕ0|ϕ−j−1, ϕ−j−2, . . .]

and assume:

(i) E[ϕ0ϕ
′

0] exists and is finite

(ii) vj converges in mean square to 0

(iii)
∑

∞

j=0 E[v′

jvj]
1/2 is finite

which implies E[ϕ(Xt, γo)] = 0 .

(H6) Let γ̂ solve 1
T

∑T
t=1 ϕ(Xt, γ) = 0 .

Then Hansen (1982) shows that:

√
T (γ̂ − γo)

a∼ N (0,Vγ) , Vγ ≡ H−1ΣH−1′ (A.1)

34



where

H ≡ lim
T→∞

E

[
1

T

T∑

t=1

ϕγ(Xt, γo)

]
(A.2)

Σ ≡ lim
T→∞

E

[
1

T

T∑

t=1

T∑

s=1

ϕ(Xt, γo)ϕ(Xs, γo)
′

]
. (A.3)

and ϕγ(Rt, γ) denotes the derivative of ϕ(Rt, γ) with respect to γ.10 Specifically, let

ϕ(Rt, γ) denote the following vector function:

ϕ(ωt,Rt, γ) ≡ [ ω1t − µω1
· · · ωnt − µωn

R1t − µ1 · · · Rnt − µn ]′ . (A.4)

where γ ≡ [ µω1
· · · µωn

µ1 · · · µn ]′. The GMM estimator of γ, denoted by γ̂, is given

implicitly by the solution to:

1

T

T∑

t=1

ϕ(ωt,Rt, γ) = 0 (A.5)

which yields the standard estimators ωi and Ri given in (30). For the moment conditions in

(A.4), H is given by:

H = − I (A.6)

where I is a (2n×2n) identity matrix. Therefore, Vγ = Σ and the asymptotic distribution

of the active ratio estimator θ̂ follows from the delta method:

√
T
(

θ̂ − θ
)

a∼ N (0, VGMM) , VGMM =
∂g

∂γ
Σ

∂g

∂γ ′
(A.7)

where ∂g/∂γ is given by:

∂g

∂γ
= [ µ1 · · · µn µω1

· · · µωn
] . (A.8)

10See Magnus and Neudecker (1988) for the specific definitions and conventions of vector and matrix
derivatives of vector functions.
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An estimator for ∂g/∂γ may be obtained by substituting γ̂ into (A.8), and an estimator for

Σ may be obtained using Newey and West’s (1987) procedure:

Σ̂ = Ω̂0 +
m∑

j=1

ω(j, m)(Ω̂j + Ω̂′

j) , m � T (A.9)

Ω̂j ≡ 1

T

T∑

t=j+1

ϕ(Rt, γ̂)ϕ(Rt−j, γ̂)′ (A.10)

ω(j, m) ≡ 1 − j

m + 1
(A.11)

and m is the truncation lag, which must satisfy the condition m/T → ∞ as T increases

without bound to ensure consistency. An estimator for VGMM can then be constructed as:

V̂GMM =
∂g(γ̂)

∂γ
Σ̂

∂g(γ̂)

∂γ ′
. (A.12)
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