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It is difficult to argue with the notion that history is rather limited in terms of predicting the future, espe-
cially when events such as EMU have the potential to render history useless.1 Therefore, to effectively 
measure financial risk in times of political or economic events such as EMU, risk managers should 
(1) consider alternative sources of information, such as option prices, to predict changes in market prices, 
and/or (2) develop a tool to ‘play out’ how potentially large market moves2 affect the risk of their portfolio. 
The implementation of the first alternative is hampered by the lack of reliable prices on options across a 
wide range of asset classes. As for the second alternative, risk managers typically rely on stress-tests to 
quantify the effect that large market moves have on their portfolio’s value. Unfortunately, as shown by 
Kupiec (1998), the standard application of stress-tests is inadequate and, therefore, rather limited in terms 
of the information it can offer.3

The focus of this article is on providing a methodology to implement the second alternative. We propose 
a tool to measure Value-at-Risk4 (VaR) associated economic and financial events, and demonstrate how it 
can be used to measure the financial risk associated with EMU-related stress scenarios. This tool, which 
we refer to as ESSA—Exploratory Stress Scenario Analysis—allows risk managers to automatically and 
consistently adjust VaR estimates to reflect their views on market price movements, market uncertainty 
and co-movements among markets. 

ESSA allows users to quantify their beliefs about future market scenarios by (1) offering a mecha-
nism to translate these beliefs into statistical parameter estimates and (2) combine these parameter 
estimates with parameter estimates based on historical prices. The relationship between market sce-
narios and the statistical parameters that enter the VaR calculation can be described by the following three 
examples:

• A large drop in market prices can be reflected in a relatively large, negative mean forecast. History 
has shown that the level of some financial prices can change rather dramatically over relatively short 
periods of time. We can account for such price moves by adjusting expected returns on the appropriate 
market prices. For example, recently, certain Asian currencies as measured against the US dollar have 
demonstrated a substantial drop in value. 

• Increased market uncertainty can be described by increasing in price volatility. It is not uncommon 
for risk managers to think of increased volatilities as representing a heightened state of market 
uncertainty. 

• Large, positive co-movements among market prices can be accounted for by increasing historical 
correlations. Depending on the market environment, correlation estimates may change dramatically, 
that is, either decrease (break down) or increase (lock up) in absolute value. An example of the latter 
involves the recent events in the dollar price of Asian currencies.5

1 Note that this problem is not specific to EMU. It is well known that structural regimes, or ‘breaks’, can severely compli-
cate forecasting procedures that are based on time series.

2 Such ‘market moves’ would either be too large to be captured by a typical Value-at-Risk system or simply be completely 
inconsistent with historical data. This inconsistency may result from the fact that there is a relatively large probability of 
an impending event.

3 Kupiec (1998) demonstrates the problem with standard stress-tests and proposes a new methodology to carry out 
such tests. 

4 We assume that the variance/covariance methodology is used to measure VaR. However, as shown below, our methodol-
ogy applies to VaR calculations based on Full Monte Carlo Simulation as well as delta/gamma. 

5 See Finger, “A methodology to stress correlations,” RiskMetrics Monitor, Fourth Quarter, 1997. 
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ESSA allows you to visualize how your risk profile, measured in terms of VaR, changes in response to 
changes in parameters that determine VaR estimates—namely, means, volatilities and correlations of mar-
ket prices. Moreover, it allows you to calculate Value-at-Risk over a range of weights that are given to a 
particular scenario. The result is that you can see how your risk profile changes as the relative importance 
of a particular scenario changes.

As will become more clear below, ESSA is a considerable enhancement to standard stress-testing for three 
reasons. First, ESSA casts stress-testing in a standard VaR setting so that comparisons between typical VaR 
estimates and “stress-test” risk estimates are consistent. Second, ESSA allows users to quantify how the 
risk profile of a particular portfolio changes in response to (1) different stress scenarios and (2) the impor-
tance of these stress scenarios. And third, ESSA allows users to measure systemic risk, defined as the risk 
from infrequent events that are highly correlated across a large number of assets. Usually, stress-testing 
procedures focus exclusively on catastrophic risk where changes in correlation are ignored.

The rest of this article is organized as follows:

• In Section 2, we present the basic model used to generate “Scenario-VaR” estimates and provide two 
examples to demonstrate how ESSA works.

• In Section 3, we apply ESSA to a portfolio consisting of fixed income and equity positions to study 
how that portfolio’s value changes in response to five hypothetical EMU-related stress scenarios.

• In Section 4, we explain briefly how it is straightforward to apply ESSA to measure the market risk 
on option positions. In particular, we discuss how to implement ESSA when using Monte Carlo Sim-
ulation and delta/gamma methodologies.

• Section 5 summarizes the article’s main points and underscores the importance that changes in the 
mean have on VaR estimates as compared to volatilities and correlations. 

1. The basic model and examples

ESSA relies on a model for market returns that is really quite simple and just an adaptation of the original 
RiskMetrics model, which applies the variance/covariance (VCV) or structured Monte Carlo Simulation 
VaR methodologies. All risk calculations are based on the assumption that market returns6can be described 
reasonably well by the multivariate normal distribution (MVN),7 which implies that the parameters that 
determine VaR are means, variances and covariances. Mathematically, we can write this assumption as: 

[1]

where  represents an N x 1 vector of market returns at time t with mean vector  and covariance 
matrix .

6 We assume that returns on market factors (e.g., USD/DEM exchange rate) are conditionally normal. We do not, however, 
make any particular assumption about the distribution of returns on positions. 

7 This assumption may not be as unrealistic as it appears. Kupiec (1998) provides some evidence that the conditional mul-
tivariate normal distribution performs reasonably well at measuring risk associated with stress scenarios. 

Rt MVN µ Σ,( )∼

Rt µ
Σ
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Our point of departure from the standard RiskMetrics model is the assumption that estimates of the statis-
tical parameters that determine VaR consist of two parts: (1) an objective part, which is based on time se-
ries of market prices, such as those provided by RiskMetrics, and (2) a subjective part, which is based on 
one’s view on future market moves. As we show below, market views about a particular scenario enter the 
VaR calculation through the subjective mean and the covariance matrix.

To be more specific, we assume that the mean and the covariance matrix that enter the VaR calculation can 
be written as the weighted average of their respective data-based (objective) and market view (subjective) 
counterparts. Mathematically, the VaR estimate is based on a mean, , and covariance matrix, , given 
by:8

[2]

where

•  and  are estimates for the mean and the covariance matrix, respectively, based on historical mar-
ket prices (e.g., RiskMetrics). Chart 1 illustrates the relationship between time series of market re-
turns, mean and covariance parameters, and the standard VaR (RiskMetrics) calculation. 

Chart 1
Standard VaR calculation
Objective parameter estimates (based on historical prices)

•  and  are the subjective or prior values for the mean and covariance matrix, respectively. That 
is,  and  represent the mean and covariance parameters associated with a specific market view 
on a scenario. The values of these parameters may simply be the result of a risk manager’s ex-ante 
view of future market moves or based on an alternative (data-based) estimate of the mean and cova-
riance matrix.9 Chart 2 (page 33) illustrates the relationship between a risk manager’s market view, 
statistical parameters and the VaR estimate.

8 To avoid messy notation, throughout this article we ignore the time t designation. Readers should assume that all calcula-
tions are for time t using market information (prices) up to and including time t − 1. 

9 For example, Kupiec (1998) explains how to appropriately adjust the mean and covariance matrix of market returns when 
conditioning on specific scenarios. 
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Chart 2
VaR calculation based on market view
Subjective parameter estimates translate market opinion into statistical parameters

•  and  are weights that take values from 0 to 1 (or 0% to 100%) and that are applied to the prior 
mean and covariance matrix, respectively. These weights determine the relative importance that is 
given to the prior mean and covariance matrix, i.e., the importance that should be given to a particular 
scenario. Throughout this article we assume that  =  = ; however, nothing prevents us from 
relaxing this assumption. Chart 3 shows how these weights allow us to combine information from his-
torical prices with a market view to yield one VaR estimate that reflects both types of information. 

Chart 3
VaR calculation based on combination of data and view
Update or replace historical information with your view on the market

Calculating VaR over different values of  allows us to study how sensitive a portfolio’s value is to 
a particular scenario.

ESSA’s principal contribution to measuring market risk is that it offers a straightforward and consistent 
methodology for translating market views into statistical parameter estimates that go into the VaR calcu-
lation. Table 1 (page 34) presents the three parts to this translation process. Part 1 involves specifying a 
market view (e.g., the lira (ITL) drops 15% against the deutschemark (DEM) over the next day); part 2 
involves converting this view into statistical parameter estimates (e.g., the one-day expected return (mean) 
on the ITL/DEM exchange rate increases 15%) and part 3 involves the methodology that allows views to 
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be quantified, i.e., the exact method of how market views are translated into changes in means, volatilities 
and correlations.

Table 1 shows how to translate four market views into changes in the parameters that govern VaR. Note 
that we did not choose means, volatilities and correlations as the parameters that are affected by market 
views simply because it is easy to do so. On the contrary, we made a deliberate choice to convert market 
views into changes in these parameters because market professionals tend to think (or at least speak) in 
terms of these parameters. Surely, it is our experience in working with clients, that risk managers and re-
lated industry professionals speak in terms of “correlation breakdowns”, “market contagion”, and “vola-
tility shocks”. An important goal in producing ESSA is, therefore, to help risk managers get a better 
understanding of their market intuition and how it translates into VaR estimates. 

As a final point in this section, note that the model we employ (Eq. [1]) is a simplified version of a more 
elaborate Bayesian statistical model, which we present in Appendix A. An alternative model that allows 
us to incorporate market views into the VaR calculation10 assumes that market returns are generated from 
a mixture of two MVN distributions; the first with mean  and covariance matrix  and the second with 
mean  and covariance matrix . We can write this model for market returns as 

[3]  

where the parameter p  denotes the probability that returns are sampled from the multivariate 
normal distribution with mean  and covariance . From a practical perspective, the problem with the 
model described by Eq. [3] is that returns do not follow a multivariate normal distribution. In fact, the 
probability distribution of their weighted sum (i.e., the portfolio) does not have an easily computable ex-
pression. Therefore, the only practical way to generate VaR estimates from Eq. [3] would require Monte 
Carlo simulation where we use Eq. [3] to generate draws of  and then value our portfolio based on these 
draws. For large portfolios, this approach would be at best time consuming and at worst impractical. The 
actual improvement of using the model in Eq. [3] over the model in Eq. [1] has yet to be determined and 
is left for further study.

10 See Zangari (1996) for an application of such a model.

Table 1
Market view translation process
Some typical market views

Part 1 Part 2 Part 3

Market view Statistical parameters Methodology 

1. Price/rate changes by x percent. mean 

2. Increase in market uncertainty by x percent 

of historical value.

volatility  

3. Large moves among several prices are 

highly correlated (systemic risk).

correlation Increase historical correlations using 

methodology proposed by Finger (1997).

4. Large moves among several prices are un-

correlated (catastrophic risk).

correlation Decrease historical correlations using 

methodology proposed by Finger (1997).

µ0( ) µ0 µ̂ x 100⁄+=

σ0( ) σ0 σ̂ 1 x 100⁄+( )=

ρ0( )

ρ0( )

µ̂ Σ̂
µ0 Σ0

Rt p MVN µ̂ Σ̂,( )× 1 p–( ) MVN µ0 Σ0,( )×+∼

0 p 1< <( )
µ̂ Σ̂

Rt
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1.1  An illustrative example
To demonstrate how ESSA works, consider a simple hypothetical portfolio consisting of two U.S. stock 
positions as reported in Table 2. 

Table 2 reports that positions in stocks 1 and 2 are USD10,000 and USD5,000, respectively. Estimates of 
volatility  and the correlation matrix, , are given by 

[4]  and 

We can write the covariance matrix, , in terms volatilities and correlations as

[5]  

where  is a matrix of zeros with volatilities, , along its diagonal. Note that the decomposition as pre-
sented in Eq. [5] allows us to separate changes in volatilities from changes in correlations. Using 
Eq. [4] and Eq. [5] we get

[6]

Lastly, as consistent with RiskMetrics, we assume that daily expected returns are zero, so that

[7]

where the element in the first (second) row refers to the expected return on stock 1 (stock 2). 

Suppose that we want to measure the Value-at-Risk of this portfolio under the following scenario.

Stock Scenario 1 

• Stock prices drop: The values of stocks 1 and 2 drop by 5 and 15 percent, respectively. To reflect this 
move, we set the prior mean to 

[8]

Table 2
Statistics for hypothetical stock portfolio
One-day standard deviation and correlation statistics based on historical market prices

Shares held
Price per share,

(in USD)
One-day standard 
deviation, (in %)

Correlation 

Portfolio Stock 1 Stock 2

Stock 1 100 100 1 1.00 0.50

Stock 2 100 50 2 0.50 1.00

V̂ R̂

V̂ 0.01

0.02
= R̂ 1.00 0.50

0.50 1.00
=

Σ̂

Σ̂ V R̂V=

V V̂

Σ̂ 0.0001 0.0001

0.0001 0.0004
=

µ̂ 0

0
=

µ0
0.05–

0.15–
=
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• Market uncertainty increases: The volatilities of stocks 1 and 2 increase by 25% and 50%, respec-
tively, over their historical values. The prior volatility vector that reflects this change is

[9]

• Stock prices lock together: The correlation between the two stocks increases to 0.85. This results in a 
prior correlation matrix (between stock 1 and stock 2).

[10]

which, together with Eq. [9], implies that the prior covariance matrix is

[11]

We calculate the VaR of this portfolio assuming that stocks follow the model given by Eq. [1] and Eq. [2]. 
Table 3 provides the VaR estimates with scenario weights equal to 0, 25%, 50%, 75% and 100%.

Table 3 shows that if we rely exclusively on historical information (zero weight), the VaR estimate is 
USD285 or approximately 2% of the current portfolio value; with a 50% weight, VaR is USD1010 (about 
7% of the portfolio value); if the event occurs with a weight equal to 100%, then VaR jumps to USD1714, 
or 11% of the portfolio value. 

Stock Scenario 2
Next, consider a different scenario where both stock prices fall by 10 percent (relative to the previous day’s 
value — see Eq. [4]) and the volatilities of both stocks increase by 15 percent. We continue to assume that 
correlations increase (lock together) as they did in the first scenario. In this case the prior mean and cova-
riance matrix are 

[12]  and

[13]

Table 3
Scenario-VaR statistics
Scenario 1; Portfolio value = $15,000

Scenario weight, (%)
VaR, (in USD)

Scenario 1
Percentage change

(rel. to history only)

Low (history only) 0 285 0

25 651 128
Middle 50 1010 254

High
75 1364 378

100 1714 501

V0
0.0128

0.0329
=

R0
1 0.85

0.85 1
=

Σ0
0.000164 0.000359

0.000359 0.001087
=

µ0
0.10–

0.10–
=

Σ0
0.000135 0.000229

0.000229 0.000540
=
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Before we present the VaR estimates associated with this scenario, the reader may want to check her intu-
ition and think about which scenario leads to a greater VaR estimate: Stock Scenario 1 where there is a 
relatively large move in volatilities, or Stock Scenario 2 where the volatilities are smaller?

Table 4 reports the VaR estimates for this new scenario for five different weights.

A comparison of the VaR estimates reported in Tables 3 and 4 shows that Stock Scenario 2 leads to mar-
ginally higher VaR estimates than Stock Scenario 1. This result reflects the increase in the expected fall in 
value of the larger position (stock 1) from −5% to −10%. 

In summary, we have demonstrated how it is possible to generate VaR estimates for two different scenarios 
with weights 0%, 25%, 50%, 75% and 100%. The model we employ provides us with a straightforward 
way to investigate how VaR changes with the magnitude and relative importance of a particular scenario. 
This model is rather flexible in that it can map market scenarios into changes in means, volatilities and 
correlations. 

Although quite simple, ESSA has the potential to be very powerful. Two specific cases where this tool can 
prove particularly useful are:

• investigating how a portfolio’s risk profile changes when means, volatilities and/or correlation 
change.11 More importantly, this tool allows us to check whether one’s intuition about the effect that 
a particular scenario has on a portfolio’s value is accurate or not.

• measuring how the risk of large portfolios changes in response to a particular scenario. Such would 
be the case with measuring corporate-wide risk, where due to numerous positions across a wide 
range of asset classes, the so-called ‘diversification benefits’ are not so obvious and there is little or 
no intuition about how a particular scenario will affect a portfolio’s value.

 In the next section we present a more detailed example that underscores the usefulness of this tool.

11 For example, this tool allows you to address the question, “Given my portfolio, what should I be most concerned about, 
changes in expected value, volatility shocks or correlation breakdowns?”

Table 4
Scenario-VaR statistics
Stock Scenario 2; portfolio value = $15,000

Scenario weight, (%)
VaR, (in USD),

Scenario 2
Percentage change

(rel. to history only)

0 (history only) 285 0
25 683 140
50 1079 279
75 1474 417
100 1868 555
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1.2 Applications to large portfolios
In the example presented in Section 1.1, it is rather apparent what effect, if any, a particular scenario would 
have on the mark-to-market value of that portfolio.12 There, it is easy to determine whether a gain or loss 
would result from a particular scenario because we know we are long the two stock positions. For portfo-
lios that contain numerous positions, each of which whose value may depend on a different financial price, 
it is especially difficult to know how sensitive that portfolio is to particular scenarios. Next, we present an 
example where we demonstrate the impact that four different scenarios have on the value of a hypothetical 
portfolio consisting of positions in ten (equally weighted) equity positions. We assume that the base cur-
rency is USD and, therefore, all risk is measured in terms of US dollars. Table 5 reports the current share 
price of equity, RiskMetrics one-day volatilities, and size (in USD) of the equity positions. 

Since we are assuming that risk is measured in USD and positions are held outside of the U.S., each equity 
position has associated with it a foreign exchange component. Table 6 (page 39) reports the corresponding 
foreign exchange positions associated with holding equity in countries outside of the US and their associ-
ated one-day RiskMetrics volatilities. 

12 That is, whether a scenario would lead to a gain or loss in a portfolio’s value. Still, even in that simple illustrative exam-
ple, the magnitude of the gain or loss may not be obvious. 

Table 5
Equity index portfolio
Closing prices and RiskMetrics one-day volatilities as of March 19, 1998
Portfolio value = $10,000,000

Country Index
Closing price,
(in local ccy)

One-day volatility,
(in %)

Position, 
(in USD)

1 Germany DAX 4,936.32 1.080 1,000,000
2 Spain Madrid General 827.06 1.144 1,000,000
3 France CAC 40 3,688.68 1.132 1,000,000
4 Finland Helsinki General 4,378.14 1.225 1,000,000
5 Indonesia Jakarta Composite 504.14 2.893 1,000,000
6 Italy MiBTel 22,337.00 1.133 1,000,000
7 Japan Nikkei 225 16,679.02 1.495 1,000,000
8 Korea Seoul Composite 525.95 3.028 1,000,000
9 Thailand SET 503.55 2.508 1,000,000
10 Taiwan Taiwan weighted 8,904.23 1.199 1,000,000
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As the last column in Table 6 shows, we assume that this portfolio is unhedged and, therefore, its value is 
completely exposed to foreign exchange risk. The one-day VaR estimate of this unhedged equity portfolio 
based on RiskMetrics volatilities and correlations for March 19, 1998 is USD280,40313 or about 2.8% of 
the portfolio’s mark-to-market value.

Let’s investigate how the risk of this portfolio changes under four hypothetical market scenarios involving 
Asian and European currencies and equities. The four scenarios are described as follows:

• Market Scenario 1: Asian currencies weaken against the US dollar. That is, the currencies of Indo-
nesia, Thailand, Korea and Taiwan all depreciate against the US dollar. These currencies move in 
lock-step reflecting a substantial increase in correlation. The increase in correlation combined with a 
rapid depreciation reflects systemic risk. 

• Market Scenario 2: Asian currencies weaken (as in Market Scenario 1) and European currencies 
strengthen relative to the US dollar. In particular, the deutschemark and french franc increase against 
the US dollar. Since the one-day RiskMetrics correlations among the European currencies are current-
ly very high (0.98, on average), we do not assume any movements in correlations. 

• Market Scenario 3: Asian and European stock prices fall. Along with the fall in equity prices, we 
assume that correlation among Asian equity prices, as well as among European equity prices, increase 
dramatically. We do not, however, make any assumptions about the change in correlation between 
Asian and European equity prices. 

• Market Scenario 4: Asian stock market and currencies fall, European stock markets and currencies 
rally. In this case, stock prices in Thailand, Korea and Indonesia fall and rise in Germany, France and 
Italy. These movements are associated with increased correlations among regional stock prices. 
Meanwhile, currencies against the USD fall in Asia and rise in Europe (i.e., in Germany and France)

Table 7 (page 40) provides a detailed description of each of the scenarios.14

13 Remember that RiskMetrics assumes that the expected return on all assets over one-day is zero.
14 Note that these scenarios are purely hypothetical and are simply for demonstrating how ESSA works. 

Table 6
Foreign exchange positions and volatilities of equity index portfolio
RiskMetrics one-day volatilities as of March 19, 1998

Country Ccy symbol
One-day volatility,

(in %)
Position,
(in USD)

1 Germany DEM 0.477 1,000,000
2 Spain ESP 0.466 1,000,000
3 France FRF 0.483 1,000,000
4 Finland FIM 0.479 1,000,000
5 Indonesia IDR 6.315 1,000,000
6 Italy ITL 0.463 1,000,000
7 Japan JPY 0.731 1,000,000
8 Korea KRW 2.508 1,000,000
9 Thailand THB 2.391 1,000,000
10 Taiwan TWD 0.459 1,000,000
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In order to change the correlation structure among financial prices, we employ the recent methodology de-
veloped in Finger’s article (1997). In that work, Finger presents a technique for changing the correlation 
among financial prices while preserving the fundamental properties of the correlation matrix. That tech-
nique is very important for the results presented in this article since it allows us to meaningfully quantify 
increases and decreases in correlations among financial prices that result from economic and financial 
events.

Table 7
Market Scenario description

Scenario Description

Effect on:

Equity Foreign exchange

1 Asian currencies weaken. No effect. 1. IDR, THB fall by 5%, and KRW and TWD by 

10%, against USD. Correlations among IDR, 

THB, KRW and TWD increase to 80% and 

IDR, THB, KRW and THB volatilities increase 

by 20%, against USD.

2 Asian currencies weaken and 

European currencies strengthen.

No effect. 1. Same as Market Scenario 1. 

2. DEM and FRF increase by 10% against USD 
(see Appendix B). DEM and FRF volatility 
against USD increases by10%.

3 European and Asia stock prices 

fall.

1. German, Italian and French stock markets fall 

by 5%.Volatilities increase by 10% and 

correlations among equity goes to 90%.

2. Stock markets in Thailand, Korea and 

Indonesia fall by 7%, volatilities go up by 

10% and correlations increase to 90%.

No effect.

4 Asian stock market and 

currencies fall, European stock 

markets and currencies rally.

1. Same as #2 in Market Scenario 3. 

2. German, Italian and French stock markets rise 
by 5%.Volatilities increase by 10% percent 
and correlations among equity goes to 90%

1. Same as Market Scenario 1.

2. Same as #2 in Market Scenario 2.

Exploratory stress-scenario analysis with applications to EMU (continued)
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Table 8 reports the VaR estimates under each of the four market scenarios.  

The results reported in Table 8 show that a weakening of Asian currencies alone (Market Scenario 1) leads 
to the greatest increase in VaR (maximum 132% increase over RiskMetrics VaR), whereas a drop in Asian 
and European stock prices (Market Scenario 3) produces the smallest increases in VaR (maximum 34.5% 
increase over RiskMetrics VaR). Chart 4 illustrates the Scenario-VaR estimates for the four market sce-
narios when the scenario weight is 100%.

Chart 4
Scenario-VaR estimates
Weight = 100%

Next, we demonstrate how ESSA can be used to assess the relationship between position size and VaR es-
timates associated with different market scenarios. We assume that we hold the same equities as reported 

Table 8
VaR statistics in USD
Unhedged portfolio; relative (to RiskMetrics) percentage change in parentheses

Scenario weight, 

(%)

RiskMetrics VaR,

(in USD)

Scenario Var,

(in USD)

1 2 3 4

0 280,403 280,403

(0.00)

280,403

(0.00)

280,403

(0.00)

280,403

(0.00)

25 NA 374,624

(33.6)

324,778

(15.8)

305,028

(8.78)

350,520

(25.01)

50 NA 467,685

(66.8)

367,974

(31.23)

329,343

(17.45)

417,965

(49.06)

75 NA 559,773

(99.63)

410,184

(46.3)

353,377

(26.02)

483,342

(72.37)

100 NA 651,030

(132.2)

451,552

(61.0)

377,154

(34.50)

547,059

(95.10)
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in Table 5, but we have hedged a large portion of our foreign exchange exposure in Asia. Table 9 reports 
the hedged foreign exchange positions. 

Table 10 reports the VaR estimates under each of the four scenarios for the hedged portfolio. 

Table 10 shows that Market Scenario 2 (Asian currencies weaken and European currencies strengthen) ac-
tually reduces the risk of the portfolio, compared to RiskMetrics. That is, the more weight the scenario is 
given, the lower the VaR estimate. This result is due to that fact that we attached positive expected returns 
to the relatively large European positions. This is a good example of how ESSA could be used to quantify 
the effect that different hedging strategies have on VaR under different stress scenarios. 

More generally, the results reported in Table 10 show that overall, the VaR estimates for the hedged port-
folio fall well below those of the unhedged portfolio (Table 9). To facilitate the comparison between the 
VaR estimates from the hedged and unhedged portfolio, Table 11 (page 43) provides the relative 

Table 9
New foreign exchange positions for hedged portfolio

Country Ccy symbol Position, (in USD)

1 Germany DEM 1,000,000

2 Spain ESP 1,000,000

3 France FRF 1,000,000

4 Finland FIM 1,000,000

5 Indonesia IDR 500,000

6 Italy ITL 1,000,000

7 Japan JPY 750,000

8 Korea KRW 250,000

9 Thailand THB 500,000

10 Taiwan TWD 750,000

Table 10
VaR statistics in USD
Hedged portfolio; relative (to RiskMetrics) percentage change in parentheses

Scenario weight, 

(%)

RiskMetrics VaR,

(in USD)

Scenario VaR,

(in USD)

1 2 3 4

0 216,562 216,562

(0.00)

216,562

(0.00)

216,562

(0.00)

216,562

(0.00)

25 NA 261,525

(20.7)

211,686

(−2.3)

241,972

(11.7)

237,798

(9.8)

50 NA 306,246

(41.4)

206,558

(−4.6)

266,925

(23.3)

257,647

(18.9)

75 NA 350,749

(61.9)

201,203

(−7.1)

291,476

(34.6)

276,380

(27.62)

100 NA 395,051

(82.4)

195,640

(−9.7)

315,670

(45.7)

294,187

(35.84)
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percentage change between the VaR estimates of the hedged and unhedged portfolio. Negative table entries 
correspond to the case where the risk from the unhedged portfolio is larger than the risk from the hedged 
portfolio. 

The conclusions drawn from Table 11 are clear: in US dollar terms, the unhedged portfolio is more risky 
(i.e., it has a larger VaR estimate) than its hedged counterpart. 

2. EMU-related stress scenarios

In the previous two sections we developed an infrastructure and provided examples to assess the impact 
that stress-scenarios have on a portfolio’s VaR. ESSA may prove to be particularly useful when it is thought 
that VaR estimates that rely exclusively on historical market prices, such as those provided by RiskMet-
rics, are effectively useless. The formation of EMU presents a potential situation where ESSA can be ap-
plied to study the effect of potential stress scenarios on portfolio VaR. In this section, we demonstrate how 
ESSA can be used to ‘play out’ potential EMU-related stress scenarios and determine how such scenarios 
impact VaR estimates. 

We examine how market scenarios that may result from EMU—so-called EMU-related stress scenarios—
affect the VaR of a USD-based portfolio consisting of fixed income and equity positions in Europe and 
Asia. Note that we take no particular stand on the likelihood or possibility of any of the EMU-related sce-
narios. Rather, our primary purpose is to illustrate how ESSA can be used to analyze the effect that differ-
ent market scenarios have on a portfolio’s VaR. 

Table 12 presents the type and position amount for our sample portfolio. 

The foreign exchange positions reported in Table 12 result from holding equity and fixed income positions 
outside of the US. 

Table 11
Relative percentage difference between hedged and unhedged portfolios
Table entries = 100 x (VaR hedged −VaR unhedged)/VaR unhedged

Scenario weight, 

(%)

Scenario

1 2 3 4

0 −23 −23 −23 −23

25 -30 −35 −21 −32

50 -35 −44 −19 −38

75 -37 −51 −18 −43

100 -39 −57 −16 −46

Table 12
Sample EMU portfolio position values in USD
Equity and fixed income positions (in 000s)
Portfolio value = $15,000,000

Europe Asia

Positions Germany France Italy Spain UK Japan Singapore

equity 750 1,200 1,000 500 1,500 1,000 500

1-year deposit 250 500 1,000 500 250 200 500

10-year gov’t bond 1,500 500 750 500 1,200 150 750

foreign exchange 2,500 2,200 2,750 1,500 2,950 1,350 1,750
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The literature on EMU is replete with market scenarios (e.g., ITL drops 15% against DEM) that may result 
prior to and during the formation of EMU. It seems that the type of EMU-related stress scenario is limited 
only by the imagination of the person who created that scenario. We focus on scenarios that may apply 
prior to January 1, 1999 in a way as to affect foreign exchange rates, equity prices and interest rates. The 
scenarios are as follows:

• EMU Scenario 1: Transition to EMU goes smoothly. Heading into January 1999, the euro has all the 
markings of becoming a low inflation, low volatility currency. In this case, history is the best guide 
to the future. 

• EMU Scenario 2: Investors perceive EMU as potentially not starting. DEM falls 10% against USD 
and the ITL falls 15% against the DEM. In addition long-term rates in EMU countries increase 200 
basis points. 

• EMU Scenario 3: Stock markets in EMU countries fall by 25% and their currencies fall 15% against 
USD. To capture systemic risk (contagion), we assume that equity price correlations among EMU 
countries increase to 90%.

• EMU Scenario 4: Stock markets in EMU countries fall by 25% and their currencies fall 15% against 
USD. We assume that equity price correlations among EMU countries fall to 0%.

• EMU Scenario 5: Large price swings occur as uncertainty creeps into the market doubling market 
volatilities among EMU equity, fixed income and foreign exchange positions. Correlations remain at 
their historical levels.

Before we present the results that show how each scenario affects VaR, some comments are in order per-
taining to EMU Scenario 2, which specifies a movement in the cross exchange rate ITL/DEM. Since we 
are assuming that the base currency is US dollars, we have to translate the change in ITL/DEM into chang-
es in USD-based currencies. In Appendix B, we demonstrate how a 15% increase in ITL/DEM and a 10% 
decrease in USD/DEM implies that the lira falls 25% against the US dollar. 

In addition, EMU Scenario 2 expresses a movement in interest rates (basis points). RiskMetrics, however, 
uses price volatilities and correlations (i.e., volatilities and correlations based on bond prices) to compute 
VaR. Therefore, in order to determine what effect this scenario will have on our VaR estimate, we must 
convert the change in basis points to an equivalent change in the expected return on bond prices. 
Appendix C explains how we convert the expected change in basis points to the expected return on bond 
prices. 

Table 13 (page 45) presents the VaR estimates for the five EMU scenarios with scenario weights equal to 
0%, 25%, 50%, 75%, and 100%.
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The results from Table 13 show, not surprisingly, that EMU Scenario 3 leads to the largest VaR estimate. 
Interestingly, there is little difference between the VaR estimates that are based on correlations of 90% 
(EMU Scenario 1) and 0% (EMU Scenario 2) among EMU stock markets. The VaR estimates associated 
with EMU Scenario 5 show that even if volatilities double across all EMU positions, the increase in VaR 
is relatively small. Obviously, these VaR estimates depend on the positions we hold. 

Chart 5 illustrates the relative differences between the VaR estimates under the five EMU scenarios. 

Chart 5
EMU-related Scenario-VaR estimates
Weight =100% 

Finally, in this section and in the last, we demonstrated how risk managers can assess the impact that par-
ticular scenarios have on the VaR of a set of positions that do not involve any options. When options are 

Table 13
Scenario-VaR statistics in USD
Sample EMU portfolio; relative (to RiskMetrics) percentage change in parentheses

Scenario weight, 

(%)

Scenario, (in USD)

1 2 3 4 5

0 139,372

(0.00)

139,372

(0.00)

139,372

(0.00)

139,372

(0.00)

139,372

(0.00)

25 NA 536,463

(284.7)

692,359

(396)

685,574

(391)

185,057

(32)

50 NA 933,553

(569.2)

1,245,325

(793)

1,231,579

(783)

221,511

(59)

75 NA 1,330,643

(854.9)

1,798,271

(1190)

1,777,361

(1175)

252,762

(81)

100 NA 1,727,733

(1139)

2,351,197

(1586)

2,322,890

(1566)

280,553

(101)

1 2 3 4 5
0
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1500000

2000000

2500000
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introduced, the methodology discussed above is the exact same; the only difference is how it is applied. 
In the next section, we discuss how to include options into ESSA.

3. Nonlinear risk

Two popular methodologies that industry professionals currently employ to measure market risk of option 
positions are Full Monte Carlo Simulation (FMCS) and delta/gamma (DG). Whereas FMCS relies exclu-
sively on full valuation, in DG, an analytical expression based on an option’s underlying ‘greeks’ is used 
to approximate the value of an option. Next, we demonstrate how to use both methodologies in ESSA.   

3.1 Full Monte Carlo Simulation (FMCS)
Standard FMCS requires that we simulate price distributions using some estimate of the mean and cova-
riance matrix of market returns. The simulation is done in three steps:

1. Generate draws of correlated market returns from the multivariate normal distribution with a mean m 
and covariance matrix, C.

2. Convert these market returns to respective prices and rates.

3. Value the option positions at the simulated prices and rates. 

To implement ESSA, we simply use the weighted mean and covariance matrices that are defined in Eq. [2] 
to simulate market returns and market prices/rates that are consistent with market scenarios. These simu-
lated prices and rates are then used in the valuation process.

In situations where there is concern about the risk associated with movements in implied volatility, we can 
change implied volatilities in the same manner that we adjusted historical volatilities to reflect market un-
certainty. Option positions would then be revalued under these new, adjusted implied volatilities. 

3.2 Delta/Gamma (DG) methodology
According to the DG methodology, the price of an option can be approximated by a combination of its 
delta, gamma, and changes in underlying market variables. This approximation may be improved by in-
cluding other ‘greeks’ such as the option’s theta (time) and vega (implied volatility). Next, we show how 
it is straightforward to use DG in ESSA. To keep matters simple, we focus exclusively on delta and gamma, 
keeping in mind that it is relatively simple to account for theta and vega as well.15

In the standard DG framework, we expand around last period’s price such that the value of an option at 
time t can be written as:

[14]

15 A complete explanation of the DG approach can be found in Section 6.3 of the RiskMetrics™—Technical Document, 
December 1996, 4th edition. 

Vt Vt 1– ∆t 1– St St 1––( ) 0.5Γ t 1– St St 1––( )2
+ +≈
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where 

 and  are tomorrow and today’s option value, respectively. 

 and  are tomorrow and today’s price of the underlying asset, respectively.

 and  are today’s delta and gamma, respectively. The values of these parameters are 
based on today’s spot price, .

After some manipulation, it is possible to write the return on the option in terms of returns on the under-
lying and adjusted delta and gamma, i.e., 

[15]

where 

 is the return on the option. 

 is the return on the underlying asset.

 and  are the adjusted delta and gamma, respectively. (See Section 6.3 of the 
RiskMetrics™—Technical Document [4th edition].)

Now, in ESSA we are interested in measuring deviations from stress values of the spot price. Therefore, 
instead of expanding around the current spot price, , we expand around the spot price implied by 
a particular scenario  to get

[16]

where, now

 and  are tomorrow and today’s option value, respectively, evaluated at the stress 
price .

 and , are the adjusted delta and gamma, respectively, evaluated at the stress price . 

In terms of Eq. [16], the return on the option, , under the stress scenario becomes 

[17]

where

 represents the returns generated from the distribution described by Eq. [1] and Eq. [2]

 and , are the adjusted delta and gamma, respectively, evaluated at the stress price . 

Using Eq. [17] we can calculate the return on as many options as necessary and apply the methods set forth 
in Section 6.3 of the RiskMetrics™—Technical Document (4th edition) that explains how to 
implement DG. 
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4. Conclusions

As the formal establishment of phase one of EMU nears, risk managers are concerned about how its de-
velopments will affect, if at all, the stability of financial markets. Therefore, it is important that risk man-
agers have a tool that allows them to study how an event such as EMU, and its repercussions, may affect 
the value of their portfolio. This article presents a tool to perform exploratory stress scenario analysis, 
which we refer to as ESSA. ESSA allows risk managers to convert their views on potential market scenarios 
into statistical parameter estimates that enter the VaR calculation. We provided three sets of scenarios of 
how ESSA can be applied, including an application to EMU-related stress scenarios. Our study shows that 
when it comes to analyzing the impact that scenarios have on simple positions, changes in the mean values 
have the greatest impact on VaR estimates followed by volatilities and correlations. Finally, we established 
how this methodology can be applied to option positions as well. 
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Appendix A

In this appendix16 we present a formal methodology for incorporating prior information into a statistical 
model. The model is based on a standard application of Bayesian statistics. 

Assume that returns, , follow a multivariate normal distribution with density function given by

[A.1]

In the Bayesian paradigm, it is assumed that the parameters  and  are random variables and, therefore, 
have their own statistical distributions. These distributions are introduced through so-called prior infor-
mation. The primary method for introducing prior information into any Bayesian decision rule is through 
specification of a natural conjugate prior. The Normal-Wishart probability distribution is the conjugate pri-
or to the multivariate normal probability distribution. We assume that the Normal-Wishart conjugate prior 
with prior parameters , , , and , is given by 

[A.2]

where

 represents the multivariate normal probability distribution for the parameter  
with mean  and covariance matrix . 

 represents the Wishart distribution. That is, the inverse of the covariance ma-

trix, , is assumed to follow a Wishart distribution with parameters  and .

 represents the joint probability density function for  and . 

The prior parameters  and  determine the strength of belief in prior values  and . Given the as-
sumption of a Normal-Wishart conjugate prior, the predictive density for returns, , , is multivari-
ate student-t distributed according to

[A.3]  

with  degrees of freedom where  represents the amount of sample information (i.e., the number of 
historical returns). Posterior estimates  and  follow from the posterior distribution of  and , and 
are given by

[A.4]  

[A.5]  

where  and 

16 This appendix is based on Frost and Savarino (1986). 
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For any given amount of sample information T, strength-of-belief weights  are determined, respective-
ly, by prior parameters  and . From Eq. [A.4], posterior estimate  of the mean vector  will more 
closely approximate prior value , the larger the strength of belief weight . Similarly, from Eq. [A.5], 
for any given value of T and , the prior  will be provided a larger weight in determining posterior 
estimate , the larger the value of the strength of belief weight . 

Now, note that Eq. [A.4] is the same as the expression for the mean given in Eq. [2]. The expression for 
the posterior covariance given by Eq. [A.5] is approximately equal to covariance term given in Eq. [2] for 
large values of T.

ωτ
τ ν µ µ̃

µ0 ωτ
ωτ Σ0

Σ ων
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Appendix B

In this appendix we establish the relationship between the expected return on the USD/DEM and USD/
ITL exchange rates and the ITL/DEM cross-exchange rates in exchange rate. In the RiskMetrics™—Tech-
nical Document (4th edition, Section 8.4, pp. 183-184), we explain how to write the return on the 
ITL/DEM  exchange rate as the difference between the return on the USD/DEM exchange rate  
and the USD/ITL exchange rate , i.e., 

[B.1]

It follows from Eq. [B.1] that the expected value of the return on the ITL/DEM exchange rate, , is the 
difference between the expected return on USD/DEM  and USD/ITL , i.e., 

[B.2]

Hence, if  and  then the expected return on the USD/ITL exchange rate is equal to 
−0.25, or .

r1( ) r2( )
r3( )

r1 r2 r– 3=

µ1( )
µ2( ) µ3( )

µ1 µ2 µ– 3=

µ1 0.15= µ2 0.10–=
µ3 0.25–=
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Appendix C

In this appendix we explain how to convert a statement on the number of basis points interest rates will 
move to the expected return on the price of a corresponding zero-coupon bond.

The price of a -period zero-coupon bond at time t is given by the expression

[C.1]  

where τ is measured in years, and  is the annualized zero-coupon interest rate and . 

Now, the time t one-day price return on the bond is 

[C.2]  

which, using Eq. [C.1], can be written as 

[C.3]  

The expected price return at time t-1, , is then given by 

[C.4]  

where  denotes the mathematical expectation of x at time t − 1.

Now, suppose that under a particular scenario we expected (at t − 1) that the interest rate  increases by 
n basis points. Since one basis point is equal to 0.01%, or 0.0001, we can write the expected value of , 

, as 

[C.5]

where n denotes the number of basis points increase (n > 0) or decrease (n < 0). So, for example if the 
current interest rate is 5.04% and we expect interest rates to increase by 3 basis points, we have 

 and n = 3, so that

[C.6]

Eq. [C.4] and Eq. [C.5] imply that the expected price return can be written as a function of the number of 
basis points change, i.e., 

[C.7]

Eq. [C.7] allows us to map directly from the change in the number of basis points under a particular sce-
nario to the expected price return on the bond. For example, a 5-basis point decrease for a 10-year zero-
coupon bond implies a 0.5% increase in the price return on the bond. Note that the longer the bond’s ma-
turity, the more sensitive the bond price is to changes in the expected interest rate. 
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