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Abstract

The Basel II Capital Accord of 2004 sets guidelines on operational risk capital
requirements to be adopted by internationally active banks by around year-end
2007. Operational loss databases are subject to a minimum recording threshold of
roughly $10,000 (internal) and $1 million (external) – an aspect often overlooked
by practitioners. We provide theoretical and empirical evidence that ignoring these
thresholds leads to underestimation of the VaR and CVaR figures within the Loss
Distribution Approach. We emphasize that four crucial components of a reliable
operational loss actuarial model are: (1) non-homogenous Poisson process for the
loss arrival process, (2) flexible loss severity distributions, (3) accounting for the
incomplete data, and (4) robustness analysis of the model.
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1 Introduction

Operational risk has been acknowledged as a major contributor to banks’

risk positions and is defined as the risk of loss resulting from inadequate or

failed internal processes, people and systems or from external events (BIS,

2004). Current estimates suggest that the allocation of total financial risk of

a bank is roughly 60% to credit, 15% to market and liquidity, and 25% to

operational risk (Jorion, 2000), 1 with internationally active banks allocating

annually roughly $2-$7 billion for operational risk (De Fountnouvelle et al.,

2003). Under the Basel II Capital Accord, banks must develop a method-

ology to estimate the operational risk capital charge which would allow to

cover damages due to potential operational loss events (BIS, 2001a, 2004).

The choice of the methodology depends on a bank’s business structure com-

plexity, risk exposure, and the ability to meet required criteria. Under the Loss

Distribution Approach (LDA) banks compute separately the loss severity and

frequency distribution functions for each business line and risk type combina-

tion. The total capital charge is then determined by the aggregation 2 of the

one year Value-at-Risk (VaR) measures across all combinations, based on the

compounded losses. 3

1 Cruz (2002) suggests 50%, 15%, and 35%, and Crouhy et al. (2001) suggest 70%,
10%, and 20%, respectively.
2 A simple summation, suggested in BIS (2001a), assumes a perfect correlation
between different business line/ event type combinations. To avoid over-estimation
of the capital charge, correlation effects must be accounted for.
3 BIS (2001b) suggested a compound Poisson process with Lognormally distributed
loss amounts. We do not restrict our attention to the homogeneity of the arrival
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An accurate estimation of the operational loss frequency and severity distri-

butions is the key to determining an optimal operational capital charge. In

an ideal scenario, the data collection process results in all loss events being

detected and duly recorded. However, the data recording is subject to lower

recording thresholds: roughly $1 million for external databases and $10,000

for the internal (BIS, 2003). Hence, the data available for estimation are left-

truncated. Some existing empirical evidence suggests that the left-truncation

of the data is ignored in estimations of the loss distribution. 4 Fitting uncon-

ditional distribution to the observed (incomplete) losses would lead to biased

estimates of the parameters of both severity and frequency distributions, as

shown in Chernobai et al. (2005b). The resulting VaR measure would be un-

derestimated (Chernobai et al., 2005b). The magnitude of the effect is further

dependent on the threshold level (assumed constant in this paper) and the

underlying loss distribution. We emphasize that under the compound Poisson

process model, the severity and frequency distributions of the operational risk

are inter-related: if the fraction of missing data is estimated to be non-zero,

then the frequency parameter(s) requires a proportional increase. A similar

model has been applied to the natural catastrophe insurance data, and it was

shown that the data misspecification leads to serious underestimation of the

ruin probabilities (Chernobai et al., 2005a).

The aim of this paper is two-fold. We investigate the effects of missing data on

loss severity and frequency distributions and then examine the impact on the

operational risk capital charge that is determined by two alternatives: the VaR

and Conditional VaR measures. We also test the adequacy of several distribu-

process and the Lognormal loss distribution.
4 See e.g., Moscadelli (2005). Lewis and Lantsman (2005) use correct loss severity
specification, but do not adjust the frequency.
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tions to model losses arising from different types of operational risk. The paper

is organized as follows. Section 2 introduces the operational loss data problem

and discusses the general methodology of treating left-truncated data. Sec-

tion 3 presents the results of an empirical study with external operational loss

data over 1980-2002 and examines the effects of using wrongly and correctly

specified loss distributions on the capital charge, using the classical approach.

Further, goodness-of-fit tests are carried out to determine an optimal law for

the loss severity and frequency. It is demonstrated that ignoring the missing

data leads to seriously misleading (underestimated) capital charge estimates.

Section 5 applies a robust approach to examine the behavior of the bulk of

the data and the marginal effects of outlying high-magnitude observations on

the capital charge and forecasts. Section 6 concludes and states final remarks.

2 Truncated Compound Poisson Model for Operational Risk

2.1 Compound Poisson Process Model

The Loss Distribution Approach assumes an actuarial type model for the

aggregated operational losses for a particular business line/ event type com-

bination. The losses are assumed to follow a stochastic process {St}t≥0:

St =
Nt∑

k=0

Xk, Xk
iid∼ Fγ , (1)

in which the random sequence of loss magnitudes {Xk} follows the distribu-

tion function (cdf) Fγ and the density fγ, and in which the counting process

Nt is assumed to take a form of a homogeneous Poisson process (HPP) with

intensity λ > 0 (or a non-homogeneous Poisson process (NHPP) with inten-

sity λ(t) > 0). Fγ belongs to a sufficiently well-behaved parametric family
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of continuous probability distributions, and fγ is defined on support R>0; γ

can be estimated consistently by the Maximum Likelihood Estimation (MLE)

method. Depending on the distribution, γ is a parameter vector or a scalar;

for simplicity, we would refer to it as a parameter throughout the paper. In-

dependence between frequency and severity distributions is assumed. The cdf

of the compound Poisson process is given by:

P (St ≤ s) =


∑∞

n=1 P (Nt = n) Fn∗
γ (s) s > 0

P (Nt = 0) s = 0

(2)

where F n∗
γ denotes the n-fold convolution of F with itself.

In practice, model (1) can be used to determine the required capital charge

imposed by regulators. It is measured as the (1 − α) × 100th quantile of the

cumulative loss distribution (2) over a one year period, i.e., VaR, defined as

the solution to:

P (St+4t − St > VaR4t,1−α) = α. (3)

An alternative risk measure, Conditional VaR (CVaR), 5 is defined by:

CVaR4t,1−α : = E [St+4t − St | St+4t − St > VaR4t,1−α]

=
E [St+4t − St ; St+4t − St > VaR4t,1−α]

α
. (4)

Given a sample x = (x1, x2 . . . , xn) containing n losses which have occurred

during some time interval 4t = T2 − T1, under the imposed assumptions on

the structure of Fγ, the task of estimating λ and γ can be performed with the

MLE principle (or, in case of a NHPP, λ(t) is estimated by directly fitting

some deterministic function):

λ̂MLE(x) =
n

4t
and γ̂MLE(x) = arg max

γ

n∑
k=1

log fγ(xk). (5)

5 CVaR is also called Expected Tail Loss (ETL) or Expected Shortfall (ES). Unlike
VaR, CVaR satisfies the properties of a coherent risk measure (Artzner et al., 1999)
and allows to capture better the tail events.
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The task of operational loss data analysis is complicated by the presence of

missing data falling below the left-truncation point (the minimum collection

threshold). The question addressed in subsequent analysis is whether ignoring

the missing data (we call it the ‘naive’ approach) has a significant impact on

the estimation of the frequency parameter λ (or λ(t)) and the severity param-

eter γ. From the statistical point of view, the estimates of parameters involved

in (5) would be misleading (biased). However, in practical applications an ar-

gument that small losses can not have a significant impact on VaR that is

determined by the upper rather than lower quantiles of the loss distribution,

can be used to wrongly justify ignoring the threshold. Another argument says

that ignoring low-magnitude data may result in an upward bias in the capital

charge; as an example, De Fountnouvelle et al. (2003) suggested that fitting

raw loss severity distribution to the data may lead to overestimation of the

capital charge, which is in contrast to the arguments and empirical findings

that we present further in this paper. In the following section we review the

methodology for consistent estimation of loss and frequency distributions, as

suggested in Chernobai et al. (2005b).

2.2 Estimation of Complete-Data Severity and Frequency Distributions

In the presence of missing data, the observed operational losses follow a trun-

cated compound Poisson process. We use notations similar to those in Cher-

nobai et al. (2005b). The available data set collected in the time frame [T1, T2]

is incomplete due to the non-negative pre-specified threshold u that defines a

partition on R>0 through the events A1 = (0, u) and A2 = [u,∞). Realizations

of the losses in A1 do not enter the data sample, with neither the frequency nor

the severity being recorded. Realizations in A2 are fully reported, with both
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the frequency and the loss amounts being specified. Hence, observations in

A1 constitute the missing data, and those in A2 the observed, left-truncated,

data. The observed sample is of the form z = (n,x), where n is the number of

observations in A2 and x are the values of these concrete observations. Given

that the total number of observations in the complete sample is unknown,

one possible joint density specification of z (with respect to the product of

counting and Lebesgue measures), consistent with the model in Equation (1),

is given by the following expression:

g
λ,γ(z) =

(4t λ̃)n

n!
e−4t λ̃ ·

n∏
k=1

fγ(xk)
qγ,2

, (6)

where qγ,j denotes the probability for a random realization to fall into set

Aj, j = 1, 2, λ̃ is the observed intensity 6 related to the complete-data intensity

λ by λ̃ := qγ,2 · λ, and 4t := T2 − T1 is the length of the sample window. In

the representation (6), the Poisson process Ñt with intensity λ̃ that counts

only the observed losses exceeding u can be thus interpreted as a thinning of

the original process Nt with intensity λ that counts all events in the complete

data sample. Due to the assumption of independence between frequency and

severity, the maximization of the corresponding log-likelihood function with

respect to λ and γ can be divided into two separate maximization problems,

each depending on only one parameter:

γ̂MLE = arg max
γ

log gγ(z) = arg max
γ

log

(
n∏

k=1

fγ(xk)
qγ,2

)
, (7)

λ̂MLE = arg max
λ

log g
λ,γ̂MLE

(z) =
n

4t · qγMLE,2
. (8)

The MLE estimation of γ can be done in two ways: performing direct numeri-

cal maximization (used in this paper), or using the Expectation-Maximization

algorithm (which was highlighted in our previous related study, Chernobai

et al. (2005b)) developed by Dempster et al. (1977).

6 In case of a NHPP, λ4t of a HPP is replaced with Λ(t) =
∫ t
0 λ(s)ds.
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µ0 = 4 µ0 = 5 µ0 = 6.5
σ0 = 1.5 0.48 0.23 0.04
σ0 = 2 0.48 0.29 0.10
σ0 = 2.7 0.49 0.34 0.17

Table 1
Fraction of missing data, Fγ0(u), for the Lognormal(µ0, σ0) example with nominal
threshold of u = 50.

(a)

1.5
2

2.5

4

5

6

0.6

0.8

1

1.2

1.4

σ
0

µ
naive

/µ
0
 ratio. Initial Threshold=50

µ
0

µ na
iv

e / 
µ 0

(b)

1.5
2

2.5

4

5

6

0.4

0.6

0.8

1

σ
0

σ
naive

/σ
0
 ratio. Initial Threshold=50

µ
0

σ na
iv

e / 
σ 0

(c)

1.5
2

2.5

4

5

6

0
0.2
0.4
0.6
0.8

1
1.2

σ
0

Q
naive

/Q
0
 ratio. Initial Threshold=50

µ
0

Q
na

iv
e / 

Q
0

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

fraction of missing data

λ ob
s / 

λ 0

λ
0
 / λ

0
    

λ
obs

 / λ
0

Fig. 1. Ratios of estimated parameters to the true (complete-data) parameter values
for the Lognormal example under the ‘naive’ approach, u = 50.

The theoretical implications of a data misspecification on relevant parameters

and VaR estimates have been discussed in Chernobai et al. (2005b). Here we

limit ourselves to an illustrative example. We consider an exemplary model,

defined by (1), with a Lognormal severity distribution of losses exceeding the

threshold of u = 50 arriving as a homogeneous Poisson process. The corre-

sponding fraction of missing data is depicted in Table 1. Figure 1 demonstrates

the ratios of the estimated parameters – µ, σ, and λ – and estimated fraction

of missing data, to the true parameters and fraction for a wide range of initial

(complete-data) true values of µ and σ. The distance between the ratio and
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one represents the relative bias for each case. The ratio being equal to one

indicates the absence of bias. Clearly, µ is overestimated, and σ and λ are

underestimated under the ‘naive’ approach.

3 Application to Operational Risk Data

3.1 Purpose of Study and Data Description

The empirical section applies the model to operational risk data obtained from

a major European operational loss data provider. The external database 7 is

comprised of operational loss events throughout the world. The dataset used

for the analysis covers losses in US$ for the time period between 1980 and

2002. The original dataset consists of five types of losses: “Relationship” (such

as events related to legal issues, negligence, and sales-related fraud), “Hu-

man” (such as events related to employee errors, physical injury, and internal

fraud), “Processes” (such as events related to business errors, supervision,

security, and transactions), “Technology” (such as events related to technol-

ogy and computer failure and telecommunications), and “External” (such as

events related to natural and man-made disasters and external fraud). The

loss amounts have been adjusted for inflation using the Consumer Price In-

dex from the U.S. Department of Labor. In the main body of this paper, we

present the results of the analysis using the “External” losses; all correspond-

ing results for the remaining 4 loss types are presented in the Appendices

7 We note that since the data are external, the estimates of the parameters and VaR
and CVaR values may not be applicable to any particular bank. The purpose of the
empirical study is to apply the model proposed in Section 2 and verify the effects
of using wrong and correct approaches on the estimates of the capital charge. We
recommend to the risk managers to apply the technique to their internal databases.
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Sample Descriptive Statistics

n 233
min ($ ’000,000) 1.1
max ($ ’000,000) 6384
mean ($ ’000,000) 103.35
median ($ ’000,000) 12.89
st.dev. ($ ’000,000) 470.24
skewness 11.0320
kurtosis 140.8799

Table 2
Descriptive statistics of the “External” type loss data.

A (classical analysis) and B (robust analysis; see Section 5). The descriptive

statistics for the “External” losses are presented in Table 2.

In the empirical study we focus on two scenarios. The first scenario we refer to

as a ‘naive’ approach, in which no adjustments to the missing data are made

in the analysis. The second scenario is the refined ‘conditional’ approach, in

which the losses are modelled with truncated (conditional) distributions, given

that the losses are larger than or equal $1 million (which is the lower threshold

for external databases). The MLE estimates of the loss distribution parameters

are obtained according to Equation (8). The frequency function’s parameters

of the Poisson counting process are adjusted according to Equation (7).

3.2 Operational Frequency Distributions

We consider two types of the counting process: a homogeneous (HPP) and

a non-homogeneous (NHPP) Poisson process. The cumulative intensity for

the HPP is computed by λ4t, and the estimate for λ is obtained by simply

averaging the annual total number of operational loss events. The cumulative

intensity for the NHPP equals Λ(t) =
∫ t
0 λ(s)ds.

For this particular data set, visual inspection of the annually aggregated num-
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Fig. 2. Annual accumulated number of “External” operational losses, with fitted
non-homogeneous and simple Poisson models.

ber of losses (Figure 2) suggests that the accumulation resembles a continuous

cdf-like process. On the basis of this, we consider two following functions 8 for

the NHPP, each with four parameters: 9

(1) Type I: a Lognormal cdf-like process of form

Λ(t) = a + b exp

{
−(log t− d)2

2c2

}
(2π)−1/2c−1;

(2) Type II: a Log-Weibull cdf-like process of form

Λ(t) = a− b exp
{
−c logd t

}
.

Process Parameter Estimates MSE MAE
Type I a b c d

2.02 305.91 0.53 3.21 16.02 2.708
Type II a b c d

237.88 236.30 0.00026 8.27 14.56 2.713
Poisson λ

10.13 947.32 24.67

Table 3
Fitted frequency functions to the “External” type losses.

We obtain parameters a, b, c, d by minimizing the Mean Square Error (MSE).

Table 3 demonstrates the estimated parameters and the MSE and the MAE for

the cumulative intensities of the Type I, Type II, and a simple homogeneous

Poisson processes with a constant intensity factor.

8 Of course, asymptotically (as t → ∞) such functions would produce a constant
cumulative intensity. However, for this particular sample and this particular time
frame the model appears to provide a good fit.
9 Other deterministic functions were tried for the cumulative intensity (sinusoidal,
tangent, etc.), but did not result in a good fit.
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Figure 2 shows the three fits plotted together with the actual aggregated

number of events. The two non-linear fits appear to be superior to the standard

Poisson, and confirmed by the MSE and MAE error comparison from Table 3.

In the subsequent analysis, we will assume the deterministic non-linear (Type

I or II) forms for the operational loss frequency distributions, and will no

longer consider the HPP case.

3.3 Operational Loss Distributions

We restrict our attention to the loss distributions that lie on the positive real

half-line. 10 The following loss distributions are considered in the study: 11

Lognormal LN (µ, σ) fX(x) = 1√
2πσx

exp

{
− (log x−µ)2

2σ2

}
x ≥ 0, µ, σ > 0

Weibull Weib(β, τ) fX(x) = τβxτ−1 exp {−βxτ}

x ≥ 0, β, τ > 0

Logweibull logWeib(β, τ) fX(x) = 1
x

τβ(log x)τ−1 exp {−β(log x)τ}

x ≥ 0, β, τ > 0

Generalized GPD(ξ, β) fX(x) = β−1(1 + ξxβ−1)
−(1+ 1

ξ
)

Pareto x ≥ 0, β > 0

Burr Burr(α, β, τ) fX(x) = ταβαxτ−1(β + xτ )−(α+1)

x ≥ 0, α, β, τ > 0

log-αStable logSα(β, σ, µ) fX(x) =
g(ln x)

x
, g ∈ Sα(β, σ, µ)

no closed-form density

x > 0, α ∈ (0, 2), β ∈ [−1, 1], σ, µ > 0

Symmetric αStable SαS(σ) fX(x) ∈ Sα(0, σ, 0),

no closed-form density

10 The exception is the symmetric αStable distribution, for which we symmetrized
the data by multiplying the losses by −1 and adding them to the original data.
11 See e.g., Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000) on
discussion and applications of the α-Stable distributions.
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γ,Fγ(u) ‘Naive’ Conditional
LN µ 16.5789 15.7125

σ 1.7872 2.3639
Fγ(u) 0.0610 0.2111

Weib β 1.1613·10−4 0.0108
τ 0.5175 0.2933

Fγ(u) 0.1375 0.4629
logWeib β 3.1933·10−12 2.8169·10−8

τ 9.2660 6.2307
Fγ(u) 0.1111 0.3016

GPD ξ 1.2481 1.5352
β 1.2588·107 0.7060·107

Fγ(u) 0.0730 0.1203
Burr α 0.0987 0.1284

β 2.5098·1026 3.2497·1020

τ 4.2672 3.3263
Fγ(u) 0.0145 0.0311

logSα α 1.8545 1.3313
β 1 -1
σ 1.1975 2.7031
µ 16.6536 10.1928

Fγ(u) 0.0331 0.9226
SαS α 0.6820 0.5905

σ 1.1395·107 0.7073·107

Fγ(u) 0.0715 0.1283
Table 4
Estimated γ and Fγ(u) values for the “External” type operational loss data.

Table 4 demonstrates the parameter γ values of the fitted distributions to

the “External” data set and the estimated fraction of the missing data Fγ(u),

under the ‘naive’ and the conditional approaches. Fγ(u) estimates in Table 4

indicate that under the truncated fit more weight is put on the lower magni-

tude losses, including the missing losses, than what is predicted by the ‘naive’

model. Fγ(u) indicates the true ‘information loss’ due to data misspecification.

We find that for all distibutions except the log-αStable the estimated fraction

of data below the threshold is between 1.5 and four times higher under the

conditional approach. For the log-αStable under the conditional approach the

fraction of missing data is estimated to be approximately 92% and is 28 times

higher than under the naive approach.
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Further, under the conditional approach the location parameters (if relevant)

are decreased, the scale parameters increased and the shape parameters (if

relevant) decreased under the correct model, in most cases. 12 Furthermore,

the change in the skewness parameter β of the log-αStable law from 1 to −1

indicates that the right tail of the loss distribution under the correct model

has a near-exponential decay.

3.4 Goodness-of-Fit Tests for Operational Loss Distributions

The goal of this section is to determine which of the considered loss distribu-

tions fits the data sample best, based on the in-sample goodness-of-fit tests.

We point out that the ‘naive’ approach produced high test statistic values

and near-zero p-values for most distributions indicating the inadequacy of the

methodology. Therefore, in this section we restrict ourselves only to the results

on the correct conditional approach. We compare the empirical distribution

function (EDF) with the fitted distribution functions. In particular, we wish

to determine, whether (and to what degree) it is likely that the sample is

drawn from a Lognormal, Weibull, or other considered distribution. We thus

test a composite hypothesis that the EDF of the truncated sample belongs

to a hypothesized truncated distribution. The null and alternative hypotheses

are summarized as:

H0 : Fn(x) = F̂ (x) HA : Fn(x) 6= F̂ (x), (9)

where Fn(x) is the empirical and F̂ (x) is the fitted cdf defined as:

F̂ (x) =


F̂θc (x)−F̂θc (H)

1−F̂θc (H)
x ≥ H

0 x < H.

(10)

12 For GPD, the shape parameter equals 1/ξ.
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D V A Aup A2 A2
up W 2

LN 0.6504 1.2144 2.1702 316.20 0.5816 2.5993 0.0745
[0.326] [0.266] [0.469] [0.459] [0.120] [0.589] [0.210]

Weib 0.4752 0.9498 2.4314 4382.7 0.3470 5.3662 0.0337
[0.852] [0.726] [0.384] [0.108] [0.519] [0.164] [0.781]

logWeib 0.6893 1.1020 2.2267 3130.6 0.4711 4.1429 0.0563
[0.296] [0.476] [0.481] [0.128] [0.338] [0.283] [0.458]

GPD 0.9708 1.8814 2.7742 151.94 1.7091 8.6771 0.2431
[0.009] [<0.005] [0.284] [0.949] [<0.005] [0.106] [<0.005]

Burr 1.3266 2.0385 2.8775 113.13 2.8954 15.4410 0.5137
[0.050] [0.048] [0.328] [0.989] [0.048] [0.064] [0.048]

logSα 7.3275 7.4089 37.4863 4708.7 194.74 3132.6 24.3662
[0.396] [0.458] [0.218] [0.354] [0.284] [0.128] [0.366]

SαS 0.7222 1.4305 1.1·105 3.4·1016 1.7804 1.2·1010 0.1348
[0.586] [0.339] [0.990] [0.797] [0.980] [0.841] [0.265]

Table 5
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the loss distributions fitted to the “External” loss data. Smaller statistic values and
greater p-values suggest better fit.

We consider seven statistics for the measure of the distance between the empir-

ical and hypothesized cdf: Kolmogorov-Smirnov (D), Kuiper (V ), supremum

and quadratic Anderson-Darling (A and A2), supremum and quadratic “upper

tail” Anderson-Darling (Aup and A2
up), and Cramér-von Mises (W 2). The Aup

and A2
up statistics are introduced and studied in Chernobai et al. (2005c) and

are designed to put most of the weight on the upper tail. Scaling factors
√

n

and n were used for the supremum class and the quadratic class statistics,

respectively, to make them comparable across samples of different size. The

limiting distributions of the test statistics are not parameter-free, so the p-

values and the critical values were obtained with Monte Carlo simulations, as

described in Ross (2001). p-values suggest how likely it is that the data comes

from a considered distribution, and were obtained following the four steps: (a)

generate 1,000 samples from fitted distribution, of the same size as the original

sample, (b) fit the distribution to each sample, (c) estimate the statistic value
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for each sample, and (d) find the proportion of time the statistic values from

the simulated samples exceed the original statistic value.

The goodness-of-fit test statistics and the corresponding p-values for the condi-

tional approach are presented in Table 5. Weibull and Logweibull show the best

overall fit around the center of the data, based on the Kolmogorov-Smirnov

and Kuiper tests, and more heavy-tailed distributions such as Burr, Pareto,

and symmetric Stable, suggest the best fit around the right tail based on the

“upper-tail” Anderson-Darling test. In general, the figures suggest that none

of the data provides with the best overall fit: the data is best described by

distributions with a moderate tail around the center and by those with a very

heavy-tail around the upper tail.

3.5 Expected Loss, Value-at-Risk and Conditional Value-at-Risk

In this section, we estimate the expected aggregated loss (EL), VaR and CVaR

and examine the impact of ignoring the missing data on the operational risk

capital charge. We use a forward-looking approach, and use the functional form

of the frequency and the parameters of the severity distribution, obtained from

the historical data over the available 23 year period, to forecast EL, VaR, and

CVaR one year ahead. We only consider the Type I case for the frequency, and

rescale it for the conditional case using the procedure described earlier. Table

6 provides the estimates of expected loss (whenever applicable), 13 VaR, and

CVaR (whenever applicable) estimates for the year 2003 for “External” type

losses, and compares the figures obtained using the ‘naive’ approach and the

conditional approach, obtained via 50,000 Monte Carlo samples.

13 EL was calculated directly by ELt = EX × ENt.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

×1010 ×1010 ×1010 ×1010 ×1010

LN
‘Naive’ 0.0157 0.0613 0.1697 0.1450 0.3451
Condit. 0.0327 0.1126 0.4257 0.3962 1.1617

Weib

‘Naive’ 0.0151 0.0613 0.1190 0.0975 0.1628
Condit. 0.0208 0.0885 0.2494 0.2025 0.4509

logWeib

‘Naive’ - 0.0611 0.1309 - -
Condit. - 0.0839 0.2489 - -

GPD
‘Naive’ - 0.1190 0.8381 - -
Condit. - 0.2562 2.6514 - -

Burr

‘Naive’ - 0.4072 8.7417 - -
Condit. - 0.7165 15.8905 - -

logSα

‘Naive’ - 0.1054 3.7687 - -
Condit. - 0.3879 0.8064 - -

SαS
‘Naive’ - 0.1730 1.8319 - -
Condit. - 0.4714 7.6647 - -

Table 6
Estimates of EL, VaR, and CVaR for “External” type losses.

Table 6 indicates that EL figures appear underestimated in all cases, 14 and

VaR and CVaR figures appear underestimated in most cases, whenever the

‘naive’ approach is used instead of the conditional. The figures also suggest

that the effect is more severe for heavier-tailed distributions. In general, the

EL, VaR, and CVaR estimates were 1.2 to 5 times higher under the condi-

tional fit than under the ‘naive’ fit (except for log-αStable – the distribution

under the conditional fit has a thinner right tail). 15 We conclude that ignor-

ing minimum collection thresholds may lead to a substantial underestimation

14 For some distributions (LogWeibull, GPD, Burr, log-αStable and symmetric
αStable) the EL and CVaR figures were not available, because of the infinite mean
due to the heavy-tailedness of the fitted distributions.
15 Similar conclusions were made for the other four loss type categories. See Ap-
pendix A.
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of the operational regulatory capital. It is strongly recommended to finan-

cial institutions to apply the correct conditional approach by using numerical

maximization techniques or the Expectation-Maximization algorithm in cases

when part of the data is missing.

4 Forecasting

In this section, we conduct an out-of-sample backtesting of the models. We

split our data sample into two parts: (1) the first sample consists of all data

points in 1980-1995 and will be used for calibration, and (2) the second sample

consists of the remaining data in 1996-2002. We use the first sample and

the obtained truncated loss distributions’ parameter estimates to analyze our

models’ predicting power regarding the data belonging to the second sample.

We assume that our model has a one-step ahead predicting power, with one

step equal to one year (due to a scarcity of data, it would be unreasonable

to use smaller intervals). In the primary step we use the data from 1980 until

1995 to conduct the forecasting about 1996 losses.

First, we estimate the unknown parameters of truncated distributions. Next,

to obtain the distribution of the annually aggregated losses we repeat the

following a large number (10,000) of times: use the estimated parameters to

simulate N losses exceeding the $1 million threshold, where N is the random

number of losses in the year that we perform forecasting on as dictated by

the fitted frequency function, and aggregate them. At each forecasting step

(seven steps total) we shift the window by one year forward and repeat the

above procedure. In this way we test the model for both the severity and

frequency distributions. We have observed that both Type I and II models fit
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the data very well. For simplicity, in this section we only focus on the Type

I model. Since the observed data is incomplete, we are only able to compare

the forecasting power regarding the truncated (rather than complete) data.

The analysis was carried out in two parts. In part one, we compared several

quantiles (25, 50, 75, 95, 99, and 99.9) of the forecasted aggregated loss distri-

bution with the corresponding bootstrapped (non-parametric) quantiles of the

realized loss distribution. 16 Table 7 presents the MSE and MAE error esti-

mates for the forecasted quantiles relative to the corresponding bootstrapped

quantiles (left) and relative to the realized total loss (middle), and the errors

of the simulated relative to the actual aggregate loss (right), for the “External”

type losses. Errors around the 25th and 75th quantiles show the errors around

the central bulk of the data, 50th quantile corresponds to the median, and the

errors around the highest quantiles (95, 99, and 99.9) are the errors at the far

right end of the distribution. Clearly the Weibull model provides the lowest

estimates for the errors, followed by the Logweibull and log-αStable models.

In the second part of the analysis, we tested the severity distribution models

(without checking for the frequency) via the Likelihood Ratio (LR) test sug-

gested in Berkowitz (2000). While non-parametric tests like the Kolmogorov-

Smirnov, Kuiper, or Cramér-von Mises are rather data-intensive (Crnkovic

and Drachman, 1997), the LR test is especially useful for small data samples.

It is based on the following methodology. Assume that we are interested in a

stochastic process xt, t > 0, which is being forecasted at time t−1. Let further

the probability density of xt be f(xt) and the associated distribution function

be F (xt) =
∫ xt
−∞ f(u)du. To conduct the test, we estimate the parameters of

the loss distribution F̂ from the historical data in the calibration period. If F̂

16 The use of bootstrapping and Monte Carlo was suggested by the Basel Committee
(BIS, 2001b, 2004).
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Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0006 0.0222 0.0016 0.0353

50 0.0016 0.0287 0.0016 0.0295

75 0.0088 0.0731 0.0106 0.0836

95 0.2182 0.4012 0.2563 0.4449

99 2.5172 1.4166 2.7096 1.4796

99.9 60.6060 6.9971 62.0201 7.0857

0.6723 0.1351

Weib

25 0.0006 0.0219 0.0015 0.0348

50 0.0015 0.0281 0.0016 0.0289

75 0.0065 0.0619 0.0078 0.0724

95 0.0780 0.2426 0.1004 0.2862

99 0.4396 0.6138 0.5223 0.6768

99.9 3.1658 1.6437 3.4673 1.7296

0.0360 0.0841

logWeib

25 0.0006 0.0218 0.0015 0.0350

50 0.0015 0.0282 0.0015 0.0289

75 0.0064 0.0608 0.0078 0.0713

95 0.0938 0.2569 0.1177 0.3007

99 0.6237 0.7115 0.7186 0.7750

99.9 7.4055 2.4166 7.8048 2.5032

0.0716 0.0899

GPD

25 0.0007 0.0230 0.0017 0.0359

50 0.0028 0.0349 0.0028 0.0349

75 0.0540 0.1674 0.0059 0.1779

95 19.5035 3.2362 19.8077 3.2804

99 6988.76 54.7280 6995.41 54.7908

99.9 3.1·107 3054.17 3.1·107 3054.26

0.56·1010 309.80

Burr

25 0.0008 0.0244 0.0017 0.0373

50 0.0194 0.0714 0.0109 0.0713

75 0.5632 0.5450 0.5812 0.5555

95 1286.89 25.4530 1289.38 25.4968

99 0.2·107 991.46 0.2·107 991.52

99.9 4.5·1010 1.4·105 4.5·1010 1.4·105

40.0·1010 6604.93

logSα

25 0.0006 0.0223 0.0015 0.0353

50 0.0016 0.0284 0.0016 0.0291

75 0.0064 0.0626 0.0078 0.0731

95 0.0899 0.2662 0.1150 0.3099

99 0.6948 0.7844 0.7980 0.8476

99.9 8.5024 2.7599 8.9913 2.8457

0.0844 0.0937

SαS

25 0.0007 0.0223 0.0015 0.0354

50 0.0038 0.0429 0.0038 0.0427

75 0.0782 0.2175 0.0851 0.2280

95 26.1532 4.1342 26.5507 4.1781

99 6397.98 63.2193 6406.84 63.2823

99.9 2.8·107 3339.51 2.8·107 3339.60

0.03·1010 130.60

Table 7
Average forecast errors for “External” type aggregated losses. Left panel: errors
between corresponding quantiles; middle panel: errors of forecasted quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss.
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LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4739 0.4617 0.4751 0.4682 0.4210 0.0156 0.4768

Table 8
Averaged p-values for “External” aggregated losses in the 7-year forecast period.

is the correct loss distribution, then based on the so-called Rosenblatt (1952)

transformation

yt =

xt∫
−∞

f̂(u)du = F̂ (xt) (11)

yt are iid and distributed uniformly on [0, 1]. Further, an iid standard Normal

(i.e. N(0, 1)) series zt can be generated from the original data xt with:

zt = Φ−1(yt) = Φ−1
( xt∫
−∞

f̂(u)du
)
. (12)

If F̂ is correctly specified, zt will be iid N(0, 1). To test whether the obtained

series zt is independent across observations and standard Normal, we follow

Berkowitz (2000). The used test statistic is LR = −2(l0 − l1) where l0 and l1

are, respectively, the log-likelihood estimates under the null parameters (µ = 0

and σ = 1) and under the parameters µzt and σzt estimated via MLE. The p-

values are obtained by referring to the χ2 distribution table and using 2 degrees

of freedom. This LR test has a number of desirable statistical properties and

can be considered a powerful test even for small sample sizes (Berkowitz, 2000).

Thus, we consider this methodology as an adequate method to investigate

whether the realized losses have come from a particular estimated distribution.

Table 8 presents the results for the “External” losses. The symmetric Sta-

ble shows the highest 7-year average p-values, and the Logweibull and Weibull

distributions - that gave the lowest forecast errors using the bootstrap method-

ology - are only slightly worse. Note that the log-αStable provides the worst
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forecasting results in terms of the LR test. Overall we conclude that Log-

weibull and Weibull seem to be most appropriate for forecasting considered

“External” losses.

5 Extension: Robust Approach

In 2001 the Basel Committee made the following statement: “...data will need

to be collected and robust estimation techniques (for event impact, frequency,

and aggregate operational loss) will need to be developed” (BIS, 2001a, An-

nex 6, p. 26). “Outlier-resistant” and “distributionally robust” – so-called ro-

bust – statistical analysis has found application in regression analysis, where

classical estimation routines (e.g., OLS) are very sensitive to seemingly minor

departures from the model assumptions. In particular, classical procedures

are highly sensitive to longtailedness in the data. Improved robustness of the

model can be achieved by (a) cleaning the data by applying some reason-

able procedure for outlier rejection, and then (b) using classical estimation

and testing procedures on the remainder of the data (Huber, 1981). Early

references on robust methods include Huber (1981); a well-known study from

finance on stock return anomalies is Fama and French (1992). More recent ref-

erences include Hampel et al. (1986), Rousseeuw and Leroy (1987), Lawrence

and Arthur (1990), Knez and Ready (1997), Martin and Simin (2003), Hubert

et al. (2004), and Olive (2005).

Applying robust methods to (operational) risk management seems merely a

matter of time, and lack of applications is likely to be explained by the follow-

ing paradox. On the one hand, the outliers are frequently the most important

part of the data (as demonstrated by the large-scale banking failures in the
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last two decades) – hence, they cannot be blindly discarded and should be

examined to see if they follow a pattern (Olive, 2005). 17 On the other hand,

outliers are ‘bad’ data in the sense that they deviate from the pattern set by

the majority of the data (Hampel et al., 1986) and tend to obscure its generic

flow. The few outlying observations may lack explanatory power regarding

the majority of the data, and classical methods will frequently fit neither the

bulk of the data nor the outliers well. Analysis of the full data with classical

approaches may also produce unsatisfactory forecasts (Olive, 2005).

We emphasize that the robust model and the classical model (applied earlier in

this paper) are not competitors: we are not advocating the use of one instead of

the other – rather, we encourage the use of both models as complements to each

other. We believe that in operational risk modelling it is important to conduct

the robust analysis in parallel with the classical, to see the behavior associated

with the bulk of the data, as well as to give consideration to the influence

imposed by the extreme losses. The results from both approaches are not

expected to be the same, as they explain different phenomena dictated by the

original data: the general tendency (the robust method) and the conservative

view (the classical method).

We note that Stress Tests widely applied in the operational risk modelling have

a similar goal. Under Stress Testing, by adding a few high observations to the

dataset one aims at examining the incremental effect of potentially hazardous

events on VaR and other measures. With the robust methodology, outlying

observations are excluded from the dataset using formal or informal outlier

detection method, 18 with the purpose of examining VaR, forecasting, and

17 For example, the excessive losses may be examined using Extreme Value Theory
and can be modelled by the Generalized Pareto Distribution.
18 In order to determine whether to exclude a high loss from the data, it may be
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γ,Fγ(u) Conditional
LN µ 15.8095

σ 1.9705
Fγ(u) 0.1558

Weib β 0.0012
τ 0.4178

Fγ(u) 0.3185
logWeib β 0.21·10−9

τ 7.9597
Fγ(u) 0.2254

GPD ξ 1.1813
β 7.7·106

Fγ(u) 0.1132
Burr α 1.1642

β 8.6·105

τ 0.8490
Fγ(u) 0.1451

logSα α 2
β 0.4377
σ 1.3992
µ 15.7960

Fγ(u) 0.1593
SαS α 0.6598

σ 0.68·107

Fγ(u) 0.1208
Table 9
Estimated γ and Fγ(u) values for the conditional distributions fitted to the “Exter-
nal” operational loss data under the robust approach.

other properties of the main bulk of the data in the absence of these potentially

impossible events. Decisions on whether to include (Stress Testing) or exclude

(robust method) high-magnitude events or whether to perform both tests, as

well as how many points and of what magnitudes to include or exclude, is left

up to the subjective judgement of the risk expert.

We here consistently exclude the highest 5% of the dataset over the entire 1980-

2002 period. We expect the proportion of the number of outliers in the calibra-

tion period (16 years, 1980-1995) to that in the testing period (7 years, 1996-

useful to look at the background information of the loss, and exclude it if there is
sufficient reason to believe that a similar event would not occur in the future.
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D V A Aup A2 A2
up W 2

LN 0.8005 1.5985 2.5289 89.9172 1.2314 10.3629 0.1581
[0.074] [0.017] [0.331] [>0.995] [<0.005] [0.080] [0.013]

Weib 0.8193 1.3842 2.1208 118.00 0.8992 6.3242 0.1149
[0.074] [0.108] [0.469] [>0.995] [0.038] [0.102] [0.069]

logWeib 0.9288 1.5545 2.3070 114.96 1.1789 6.9924 0.1550
[0.030] [0.034] [0.430] [>0.995] [0.005] [0.124] [0.017]

GPD 1.0889 2.1497 3.2082 78.7580 2.4537 14.2314 0.3238
[<0.005] [<0.005] [0.193] [>0.995] [<0.005] [0.063] [<0.005]

Burr 1.0552 2.0537 2.8205 85.6792 2.1547 13.0326 0.2922
[0.106] [0.005] [0.362] [>0.995] [<0.005] [0.006] [0.019]

logSα 0.8213 1.5891 2.5280 89.9499 1.2311 10.4590 0.1605
[0.046] [0.012] [0.302] [>0.995] [<0.005] [0.088] [0.008]

SαS 0.8182 1.6214 3.4638 67.2664 1.7561 17.3323 0.2046
[0.076] [0.034] [>0.995] [>0.995] [0.850] [>0.995] [0.020]

Table 10
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the conditional loss distributions fitted to the “External” loss data, under the robust
approach. Smaller statistic values and greater p-values suggest better fit.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

×1010 ×1010 ×1010 ×1010 ×1010

LN
0.0154 0.0580 0.1642 0.1397 0.3334

Weib

0.0088 0.0354 0.0715 0.0599 0.1066
logWeib

- 0.0395 0.0865 - -
GPD

- 0.0943 0.5604 - -
Burr

- 0.0676 0.3246 - -
logSα

- 0.0570 0.1695 - -
SαS

- 0.2234 2.4408 - -

Table 11
Estimates of EL, VaR, and CVaR for “External” type losses, under the robust con-
ditional approach.

2002) to be 0.7:0.3. For the “External” losses the proportion was 0.75:0.25. For

the remaining 4 loss types the proportions were 0.58:0.42, 0.56:0.44, 0.67:0.33,
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LN Weib logWeib GPD Burr logSα SαS

4VaR0.95

VaRclass.
0.95

× 100 48% 60% 53% 63% 91% 85% 53%

4VaR0.99

VaRclass.
0.99

× 100 61% 71% 65% 79% 98% 79% 68%

Table 12
Sensitivity of classical VaR to outliers for “External” type aggregated losses. Figures
indicate incremental VaR as the percentage of classical VaR attributed to top 5%
of data.

Sample Descriptive Statistics

n 221
min ($ ’000,000) 1.1
max ($ ’000,000) 364.80
mean ($ ’000,000) 39.7515
median ($ ’000,000) 11.40
st.dev. ($ ’000,000) 63.84
skewness 2.5635
kurtosis 10.0539

Table 13
Descriptive statistics of the “External” type loss data under the robust approach.

and 1:0, for “Relationship”, “Human”, “Processes”, and “Technology”, respec-

tively. Descriptive statistics for the “External” losses are depicted in Table 13.

Notice significant reduction in the mean, standard deviation, skewness and

kurtosis coefficients – all indicate that the trimmed data set is likely to be less

heavy-tailed.

We reproduce the results for the parameter estimates, goodness-of-fit tests,

EL, VaR, and CVaR measures, 19 together with out-of-sample goodness-of-fit

tests for the “External” type losses. All corresponding results for the other 4

types of losses can be found in Appendix B.

19 Note that many of the EL and CVaR measures produce infinite figures (denoted by
“-”). One approach may be to consider doubly-truncated loss distributions, further
truncated from above at a fixed level. This ensures the existence of a finite mean
and variance. A possible choice of the truncation point is the total value of assets,
in consideration of the limited liability by banks. Such analysis in not included in
this study.
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It is clear from Table 9 that more weight is put on the low and medium-

size losses, as can be concluded from decreased location and shape param-

eters and increased scale parameters, and a higher fraction of missing data.

The log-Stable distribution’s shape parameter has increased to 2, indicating

a thinner-tailed law, comparable to that of Lognormal. From Table 10 we can

conclude that medium-tailed distributions such as Lognormal and Weibull fit

the trimmed data well, in contrast to heavy-tailed laws in the case when all

data is included into the analysis. Table 11 indicates that the EL, VaR, and

CVaR estimates have considerably dropped. The sensitivity of classical VaR

to the highest 5% of the loss data in shown in Table 12: for a reasonable choice

of the loss distribution, 20 roughly 53% to 60% of the classical 95% VaR, and

roughly 65% to 71% of the classical 99% VaR, are attributed to the extreme

observations.

Considering the forecasts of future losses, Table 14 demonstrates that the

accuracy of the forecasts has remarkably improved. For all distributions fore-

casted quantiles of the loss distribution are much closer to the bootstrapped

quantiles and actual losses. This is especially true for the high quantiles, as

expected, since extreme losses were excluded from the analysis. We conclude

that with the robust approach the general tendency of the losses is captured

adequately. Further, the approach shows the vast influence of extreme losses

on operational VaR and the sensitivity of the risk measures VaR and CVaR to

the biggest losses in the data. Considering the choice of the right distribution,

both tests (forecast error estimates, and the LR test) converge in their indi-

cation of the best model with the in-sample goodness of fit tests: the robust

20 We have previously concluded (and confirm further by the robust methodology)
that Logweibull and Weibull models are the most appropriate candidates for mod-
elling “External” type losses.
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Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0002 0.0143 0.0004 0.0173

50 0.0004 0.0171 0.0004 0.0171

75 0.0012 0.0256 0.0017 0.0326

95 0.0179 0.1146 0.0254 0.1437

99 0.1615 0.3686 0.1946 0.4108

99.9 2.6093 1.4848 2.7830 1.5420

0.2235 0.0486

Weib

25 0.0002 0.0145 0.0004 0.0169

50 0.0003 0.0157 0.0003 0.0157

75 0.0006 0.0199 0.0009 0.0238

95 0.0037 0.0484 0.0071 0.0752

99 0.0141 0.1041 0.0244 0.1464

99.9 0.0591 0.2240 0.0868 0.2810

0.0019 0.0285

logWeib

25 0.0002 0.0142 0.0004 0.0169

50 0.0003 0.0153 0.0003 0.0153

75 0.0006 0.0195 0.0009 0.0232

95 0.0037 0.0480 0.0071 0.0760

99 0.0149 0.1097 0.0256 0.1518

99.9 0.0775 0.2561 0.1084 0.3130

0.0021 0.0285

GPD

25 0.0002 0.0143 0.0005 0.0182

50 0.0006 0.0205 0.0006 0.0205

75 0.0047 0.0486 0.0059 0.0577

95 0.6101 0.5945 0.6453 0.6236

99 45.2582 5.1661 45.7041 5.2080

99.9 0.3·105 124.80 0.3·105 124.85

0.23·105 1.6344

Burr

25 0.0003 0.0161 0.0005 0.0183

50 0.0019 0.0344 0.0019 0.0344

75 0.0568 0.1692 0.0611 0.1785

95 36.6345 4.1927 36.8775 4.2218

99 0.2·105 90.7056 0.2·105 90.7477

99.9 2.8·108 0.1·105 2.8·108 0.1·105

0.31·1010 401.06

logSα

25 0.0002 0.0141 0.0004 0.0176

50 0.0004 0.0168 0.0004 0.0168

75 0.0012 0.0253 0.0016 0.0307

95 0.0153 0.0972 0.0215 0.1262

99 0.1256 0.2958 0.1510 0.3377

99.9 1.7147 1.0895 1.8363 1.1464

0.0154 0.0416

SαS

25 0.0003 0.0176 0.0005 0.0174

50 0.0014 0.0305 0.0014 0.0305

75 0.0200 0.1080 0.0229 0.1171

95 3.5661 1.5601 3.6621 1.5892

99 620.34 19.6938 622.08 19.7359

99.9 12.5·105 812.08 12.5·105 812.14

2.34·107 29.9384

Table 14
Average forecast errors for “External” type aggregated losses, under the robust
approach. Left panel: errors between corresponding quantiles; middle panel: errors
of forecasted quantiles relative to realized loss; right panel: overall error between
forecasted and realized loss. 29



LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4876 0.5131 0.5290 0.4730 0.4395 0.3272 0.4704

Table 15
Averaged p-values for “External” type aggregated losses in the 7-year forecast period
under the robust approach.

approach confirms that the Logweibull distribution has the best forecasting

power for the “External” type loss, with Weibull being the second best choice.

6 Conclusions

In this study we proposed and empirically investigated a methodology for

consistent estimation of the loss and frequency distributions for the assumed

actuarial model of operational losses in the presence of minimum collection

thresholds. The analysis was conducted using five types of loss data (“Re-

lationship”, “Human”, “Processes”, “Technology”, and “External”) obtained

from an operational risk loss database.

Our findings demonstrated that ignoring such minimum thresholds leads to

severe biases in corresponding parameter estimates whenever the thresholds

are ignored. As a consequence, EL, VaR, and CVaR are underestimated and

are generally 1.2 to 5 times higher under the conditional approach, in which

truncated loss distributions were fitted to the loss data and frequency was

adjusted to account for information loss. A variety of goodness-of-fit measures

were used to test the adequacy of different loss distributions. For the “Ex-

ternal” type losses the Logweibull and Weibull distributions showed the best

overall fit, while more heavy-tailed distributions such as Burr, Pareto, and

symmetric αStable, better fit the upper tail, supporting the conjecture that

the operational loss data is severely heavy-tailed. The forecasts based on the
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classical approach supported moderately heavy-tailed distributions.

A robust statistics approach was introduced. Excluding outliers allows to see

the behavior of the bulk of the data, and comparison with the classical ap-

proach allows to examine the sensitivity of risk measures and forecasts to the

tail events. Roughly 53-60% of the 95% VaR, and 65-71% of the 99% VaR,

is attributed to the highest 5% losses. The robust methodology also resulted

in significantly smaller forecast errors for the trimmed data, suggesting that

the general tendency of the losses is well captured by the approach. It further

confirmed the choice of the loss distributions from the classical approach.
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7 APPENDIX A: Classical Analysis

Sample Descriptive Statistics

Relationship Human Processes Technology

n 849 813 325 67
min ($ ’000,000) 1.07 1.10 1.10 1.13
max ($ ’000,000) 6,480 23,630 13,334 830
mean ($ ’000,000) 89.86 138.47 285.55 77.43
median ($ ’000,000) 14.63 12.32 39.98 11.60
st.dev. ($ ’000,000) 360.45 901.51 955.52 136.65
skewness 11.6429 22.2416 9.1070 3.1761
kurtosis 169.9732 570.1188 112.5151 15.7230

Table 16
Descriptive statistics for the 4 loss types data. Note: due to the small sample size
of “Technology” losses, all empirical results should be treated with caution.

loss/process MSE MAE

“Relationship”
Cubic I a b c d

34.13 1364.82 0.63 3.32 76.57 7.05
Cubic II a b c d

930.29 896.17 0.0010 6.82 69.08 6.57
Poisson λ

36.91 5907.45 65.68
“Human”
Cubic I a b c d

33.49 1436.56 0.65 3.43 68.05 6.89
Cubic II a b c d

950.20 917.11 0.0008 6.80 61.59 6.60
Poisson λ

35.35 6600.38 65.33
“Processes”

Cubic I a b c d
9.44 2098.96 1.04 4.58 22.50 3.64

Cubic II a b c d
2034.25 2024.77 0.0007 4.79 23.06 3.65

Poisson λ
14.13 1664.82 36.57

“Technology”
Cubic I a b c d

0.79 120.20 0.58 3.47 3.71 1.28
Cubic II a b c d

137.68 138.39 0.0006 6.32 4.89 1.67
Poisson λ

3.35 217.04 13.42
Table 17
Fitted frequency functions to the operational losses.
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Fig. 3. Fitted frequency functions to the operational losses. Top left: “Relationship”,
top right: “Human”, bottom left: “Processes”, bottom right: “Technology”.
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γ,Fγ(u) ‘Naive’ Conditional
LN µ 16.6771 16.1911

σ 1.6956 2.0654
Fγ(u) 0.0457 0.1250

Weib β 6.1038·10−5 0.0032
τ 0.5528 0.3538

Fγ(u) 0.1189 0.3479
logWeib β 0.5128·10−12 0.2694·10−8

τ 9.8946 7.0197
Fγ(u) 0.0938 0.2386

GPD ξ 1.0882 1.2852
β 1.5516·107 1.0558·107

Fγ(u) 0.0604 0.0855
Burr α 0.4817 5.1242

β 3.4832·109 1.0221·104

τ 1.4077 0.4644
Fγ(u) 0.0365 0.2575

logSα α 1.9097 1.9340
β 1 -1
σ 1.1584 1.5198
µ 16.7182 15.9616

Fγ(u) 0.0303 0.1742
SαS α 0.7377 0.6592

σ 1.3695·107 0.9968·107

Fγ(u) 0.0558 0.0841
Table 18
Estimated γ and Fγ(u) values for the “Relationship” type operational loss data.
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γ,Fγ(u) ‘Naive’ Conditional
LN µ 16.5878 15.4627

σ 1.8590 2.5642
Fγ(u) 0.0679 0.2603

Weib β 0.0002 0.0240
τ 0.4841 0.2526

Fγ(u) 0.1501 0.5441
logWeib β 14.3254·10−12 30.7344·10−8

τ 9.8946 7.0197
Fγ(u) 0.1221 0.3718

GPD ξ 1.3761 1.6562
β 1.1441·107 0.6135·107

Fγ(u) 0.0792 0.1344
Burr α 0.0938 0.0922

β 5.1819·1027 2.8463·1027

τ 4.4823 4.4717
Fγ(u) 0.0131 0.0195

logSα α 1.6294 1.4042
β 1 -1
σ 1.1395 2.8957
µ 16.8464 10.5108

Fγ(u) 0.0083 0.8793
SαS α 0.6724 0.6061

σ 1.1126·107 0.7143·107

Fγ(u) 0.0742 0.1241
Table 19
Estimated γ and Fγ(u) values for the “Human” type operational loss data.
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γ,Fγ(u) ‘Naive’ Conditional
LN µ 17.5163 17.1600

σ 2.0215 2.3249
Fγ(u) 0.0336 0.0751

Weib β 0.0001 0.0021
τ 0.4938 0.3515

Fγ(u) 0.0923 0.2338
logWeib β 2.4894·10−12 0.1091·10−8

τ 9.1693 7.1614
Fγ(u) 0.0687 0.1479

GPD ξ 1.4754 1.6147
β 2.9230·107 2.2886·107

Fγ(u) 0.0328 0.0413
Burr α 0.8661 14.3369

β 4.3835·106 1.1987·104

τ 0.8884 0.3829
Fγ(u) 0.0405 0.2097

logSα α 2.0000 2.0000
β 0.9697 0.8195
σ 1.4294 1.6476
µ 17.5163 17.1535

Fγ(u) 0.0336 0.0760
SαS α 0.5902 0.5478

σ 2.7196·107 1.9925·107

Fγ(u) 0.0358 0.0536
Table 20
Estimated γ and Fγ(u) values for the “Processes” type operational loss data.
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γ,Fγ(u) ‘Naive’ Conditional
LN µ 16.6176 15.1880

σ 1.9390 2.7867
Fγ(u) 0.0742 0.3112

Weib β 6.3668·10−5 0.0103
τ 0.5490 0.2938

Fγ(u) 0.1177 0.4485
logWeib β 1.9309·10−12 11.0647·10−8

τ 9.4244 5.7555
Fγ(u) 0.1023 0.3329

GPD ξ 1.5823 2.0925
β 1.0470·107 0.3446·107

Fγ(u) 0.0851 0.2029
Burr α 0.0645 0.0684

β 1.7210·1035 8.7406·1020

τ 5.8111 5.2150
Fγ(u) 0.0227 0.8042

logSα α 2.0000 2.0000
β 0.7422 0.8040
σ 1.3715 1.9894
µ 16.6181 15.1351

Fγ(u) 0.0747 0.3195
SαS α 0.1827 0.1827

σ 0.1676·107 0.1676·107

Fγ(u) 0.3723 0.3723
Table 21
Estimated γ and Fγ(u) values for the “Technology” type operational loss data.
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D V A Aup A2 A2
up W 2

LN 0.8056 1.3341 2.6094 875.40 0.7554 4.6122 0.1012
[0.082] [0.138] [0.347] [0.593] [0.043] [0.401] [0.086]

Weib 0.5553 1.0821 3.8703 2.7·104 0.7073 13.8191 0.0716
[0.625] [0.514] [0.138] [0.080] [0.072] [0.081] [0.249]

logWeib 0.5284 1.0061 3.0718 7332.1 0.4682 5.2316 0.0479
[0.699] [0.628] [0.255] [0.186] [0.289] [0.282] [0.514]

GPD 1.4797 2.6084 3.5954 374.68 3.7165 22.1277 0.5209
[<0.005] [<0.005] [0.154] [>0.995] [<0.005] [0.048] [<0.005]

Burr 1.3673 2.4165 3.3069 371.65 3.1371 22.0374 0.4310
[0.032] [<0.005] [0.309] [0.960] [<0.005] [0.019] [0.011]

logSα 1.5929 1.6930 3.8184 1075.3 3.8067 10.1990 0.7076
[0.295] [0.295] [0.275] [0.041] [0.290] [0.288] [0.292]

SαS 1.1634 2.0695 1.4·105 5.0·1016 4.4723 2.6·1014 0.3630
[0.034] [<0.005] [>0.995] [0.971] [0.992] [<0.005] [<0.005]

Table 22
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the loss distributions fitted to the “Relationship” loss data. Smaller statistic values
and greater p-values suggest better fit.

D V A Aup A2 A2
up W 2

LN 0.8758 1.5265 3.9829 1086.2 0.7505 4.5160 0.0804
[0.032] [0.039] [0.126] [0.462] [0.044] [0.408] [0.166]

Weib 0.8065 1.5439 4.3544 3.2·104 0.7908 8.6610 0.0823
[0.103] [0.051] [0.095] [0.068] [0.068] [0.112] [0.188]

logWeib 0.9030 1.5771 4.1343 1.1·104 0.7560 4.5125 0.0915
[0.074] [0.050] [0.115] [0.160] [0.115] [0.392] [0.217]

GPD 1.4022 2.3920 3.6431 374.68 2.7839 23.7015 0.3669
[<0.005] [<0.005] [0.167] [>0.995] [<0.005] [0.051] [<0.005]

Burr 2.2333 3.1970 4.7780 255.91 7.0968 46.3417 1.2830
[0.115] [0.115] [0.174] [>0.995] [0.115] [0.119] [0.115]

logSα 9.5186 9.5619 36.2617 9846.3 304.61 4198.9 44.5156
[0.319] [0.324] [0.250] [0.354] [0.312] [0.215] [0.315]

SαS 1.1628 2.1537 5.8·105 4.3·1017 11.9320 3.3·1011 0.2535
[0.352] [0.026] [0.651] [0.351] [0.971] [0.436] [0.027]

Table 23
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the loss distributions fitted to the “Human” loss data. Smaller statistic values and
greater p-values suggest better fit.
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D V A Aup A2 A2
up W 2

LN 0.6584 1.1262 2.0668 272.61 0.4624 4.0556 0.0603
[0.297] [0.345] [0.508] [0.768] [0.223] [0.367] [0.294]

Weib 0.6110 1.0620 1.7210 2200.7 0.2069 2.2340 0.0338
[0.455] [0.532] [0.766] [0.192] [0.875] [0.758] [0.755]

logWeib 0.5398 0.9966 1.6238 658.42 0.1721 1.4221 0.0241
[0.656] [0.637] [0.832] [0.343] [0.945] [0.977] [0.918]

GPD 1.0042 1.9189 4.0380 148.24 2.6022 13.1082 0.3329
[0.005] [<0.005] [0.128] [>0.995] [<0.005] [0.087] [<0.005]

Burr 0.5634 0.9314 1.6075 364.08 0.2639 2.0133 0.0323
[0.598] [0.800] [0.841] [0.429] [0.794] [0.844] [0.840]

logSα 0.6931 1.1490 2.0109 272.57 0.4759 4.0910 0.0660
[0.244] [0.342] [0.534] [0.786] [0.202] [0.361] [0.258]

SαS 1.3949 1.9537 3.3·105 2.5·1017 6.5235 6.8·1014 0.3748
[0.085] [0.067] [0.931] [0.530] [0.964] [0.193] [0.102]

Table 24
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the loss distributions fitted to the “Processes” loss data. Smaller statistic values and
greater p-values suggest better fit.

D V A Aup A2 A2
up W 2

LN 1.1453 1.7896 2.8456 41.8359 1.3778 6.4213 0.2087
[<0.005] [0.005] [0.209] [0.990] [<0.005] [0.067] [<0.005]

Weib 1.0922 1.9004 2.6821 52.5269 1.4536 4.8723 0.2281
[<0.005] [<0.005] [0.216] [0.944] [<0.005] [0.087] [<0.005]

logWeib 1.1099 1.9244 2.7553 49.2373 1.5355 5.2992 0.2379
[<0.005] [<0.005] [0.250] [0.976] [<0.005] [0.114] [<0.005]

GPD 1.2202 1.8390 3.0843 33.4298 1.6182 8.8484 0.2408
[<0.005] [<0.005] [0.177] [>0.995] [<0.005] [0.067] [<0.005]

Burr 1.1188 0.9374 2.6949 28.4827 2.0320 10.5469 0.3424
[0.389] [0.380] [0.521] [>0.995] [0.380] [0.401] [0.380]

logSα 1.1540 1.7793 2.8728 41.7454 1.3646 6.4919 0.2071
[<0.005] [0.007] [0.208] [0.995] [<0.005] [0.060] [<0.005]

SαS 2.0672 2.8003 2.7·105 3.6·1016 19.6225 7.2·1010 1.4411
[>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [>0.995] [0.964]

Table 25
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the loss distributions fitted to the “Technology” loss data. Smaller statistic values
and greater p-values suggest better fit.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
‘Naive’ 0.1105 0.2832 0.5386 0.4662 0.8685
Condit. 0.1634 0.4662 1.0644 0.9016 1.9091

Weib

‘Naive’ 0.1065 0.2203 0.2996 0.2700 0.3505
Condit. 0.1284 0.3187 0.5121 0.4430 0.6689

logWeib

‘Naive’ - 0.2235 0.3193 - -
Condit. - 0.3332 0.5902 - -

GPD
‘Naive’ - 0.8240 4.1537 - -
Condit. - 1.5756 11.3028 - -

Burr

‘Naive’ - 2.8595 31.5637 - -
Condit. - 1.5713 11.5519 - -

logSα

‘Naive’ - 1.9124 7488.08 - -
Condit. - 0.4359 0.9557 - -

SαS
‘Naive’ - 2.1873 17.3578 - -
Condit. - 4.5476 56.2927 - -

Table 26
Estimates of expected aggregated loss, VaR and CVaR (figures must be further
scaled ×1010) for “Relationship” type losses. Figures are based on 50,000 Monte
Carlo samples. Where applicable, EL was computed directly as EN × EX.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
‘Naive’ 0.1981 0.4970 0.9843 0.8534 1.6652
Condit. 0.4171 1.2161 3.4190 3.3869 9.4520

Weib

‘Naive’ 0.1993 0.4017 0.5507 0.4945 0.6456
Condit. 0.2881 0.7997 1.5772 1.3232 2.3746

logWeib

‘Naive’ - 0.4174 0.6184 - -
Condit. - 0.8672 1.8603 - -

GPD
‘Naive’ - 3.9831 33.5741 - -
Condit. - 12.1150 168.64 - -

Burr

‘Naive’ - 85.5620 2690.44 - -
Condit. - 94.8281 3042.32 - -

logSα

‘Naive’ - 1.9·107 7.2·1024 - -
Condit. - 2.2737 4.2319 - -

SαS
‘Naive’ - 6.2811 77.4762 - -
Condit. - 14.5771 203.24 - -

Table 27
Estimates of expected aggregated loss, VaR and CVaR (figures must be further
scaled ×1010) for “Human” type losses. Figures are based on 50,000 Monte Carlo
samples. Where applicable, EL was computed directly as EN × EX.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
‘Naive’ 0.5622 1.5508 3.5665 3.1201 6.9823
Condit. 0.8457 2.5610 6.5625 5.7823 13.9079

Weib

‘Naive’ 0.4170 0.8800 1.2102 1.0891 1.4311
Condit. 0.5131 1.2761 2.1308 1.8257 2.8578

logWeib

‘Naive’ - 0.9611 1.4498 - -
Condit. - 1.4780 2.6511 - -

GPD
‘Naive’ - 12.5930 131.25 - -
Condit. - 20.8700 262.52 - -

Burr

‘Naive’ - 6.8569 52.0391 - -
Condit. - 1.7987 4.1859 - -

logSα

‘Naive’ - 1.5613 3.5159 - -
Condit. - 2.5394 6.7070 - -

SαS
‘Naive’ - 38.7627 529.99 - -
Condit. - 74.9073 1280.02 - -

Table 28
Estimates of expected aggregated loss, VaR and CVaR (figures must be further
scaled ×1010) for “Process” type losses. Figures are based on 50,000 Monte Carlo
samples. Where applicable, EL was computed directly as EN × EX.

42



EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN
‘Naive’ 0.0324 0.1202 0.3593 0.2970 0.7303
Condit. 0.0958 0.2898 1.2741 1.5439 5.4865

Weib

‘Naive’ 0.0226 0.0798 0.1368 0.1159 0.1795
Condit. 0.0358 0.1454 0.3625 0.2958 0.6180

logWeib

‘Naive’ - 0.0861 0.1683 - -
Condit. - 0.1670 0.4747 - -

GPD
‘Naive’ - 0.4415 5.6954 - -
Condit. - 1.6249 54.4650 - -

Burr

‘Naive’ - 2.8840 158.94 - -
Condit. - 9.0358 855.78 - -

logSα

‘Naive’ - 0.1222 0.3560 - -
Condit. - 0.2990 1.2312 - -

SαS
‘Naive’ - 4.9·105 3.2·109 - -
Condit. - 7.1·106 6.9·1010 - -

Table 29
Estimates of expected aggregated loss, VaR and CVaR (figures must be further
scaled ×1010) for “Technology” type losses. Figures are based on 50,000 Monte
Carlo samples. Where applicable, EL was computed directly as EN × EX.
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Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0038 0.0485 0.0302 0.1310

50 0.0127 0.0823 0.0155 0.0891

75 0.0260 0.1219 0.0155 0.1115

95 0.1342 0.3467 0.2140 0.4442

99 0.8866 0.8618 1.4125 1.1760

99.9 13.6999 3.6286 16.8095 4.0731

0.1357 0.1812

Weib

25 0.0018 0.0390 0.0017 0.0367

50 0.0026 0.0446 0.0025 0.0439

75 0.0039 0.0509 0.0055 0.0556

95 0.0083 0.0729 0.0170 0.1181

99 0.0151 0.1069 0.0340 0.1733

99.9 0.0288 0.1583 0.0667 0.2498

0.0052 0.0552

logWeib

25 0.0036 0.0462 0.0295 0.1297

50 0.0131 0.0822 0.0161 0.0890

75 0.0278 0.1140 0.0120 0.0977

95 0.0800 0.2312 0.0766 0.2559

99 0.2002 0.4232 0.3186 0.5532

99.9 1.0261 0.9527 1.6881 1.2759

0.0397 0.1402

GPD

25 0.0034 0.0466 0.0272 0.1212

50 0.0105 0.0807 0.0120 0.0828

75 0.0892 0.2429 0.1195 0.3047

95 8.5160 2.7851 9.7921 2.9941

99 475.35 21.3313 490.17 21.6451

99.9 1.8·105 404.99 1.8·105 405.43

3.1·105 6.9486

Burr

25 0.0031 0.0389 0.0240 0.1116

50 0.0142 0.1049 0.0146 0.1069

75 0.2266 0.4093 0.2875 0.4809

95 32.1950 5.2165 34.6466 5.4256

99 2885.1 48.2596 2917.4 48.5730

99.9 2.5·106 1275.7 2.5·106 1276.1

7.9·105 13.1930

logSα

25 0.0038 0.0488 0.0300 0.1308

50 0.0129 0.0834 0.0158 0.0902

75 0.0270 0.1208 0.0155 0.1104

95 0.1266 0.3286 0.1893 0.4083

99 0.7405 0.7785 1.2092 1.0679

99.9 8.3578 2.7464 10.7800 3.1893

0.1357 0.1746

SαS

25 0.0051 0.0471 0.0167 0.0969

50 0.0483 0.1636 0.0463 0.1542

75 0.7872 0.8014 0.9111 0.8727

95 115.14 10.1901 120.01 10.3991

99 1.3·104 106.08 1.3·104 106.40

99.9 2.6·107 4229.7 2.6·107 4230.2

1.6·109 277.43

Table 30
Average forecast errors for “Relationship” type aggregated losses. Left panel: errors
between corresponding quantiles; middle panel: errors of forecasted quantiles rela-
tive to realized loss; right panel: overall error between forecasted and realized loss.
Figures are based on 50,000 Monte Carlo samples.44



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0234 0.1082 0.1340 0.2867

50 0.0552 0.1847 0.0696 0.2070

75 0.0887 0.2432 0.0719 0.2314

95 0.9726 0.8818 1.9093 1.3553

99 16.1004 3.9229 22.1948 4.6771

99.9 518.30 21.9305 562.41 22.9933

35.7234 0.5449

Weib

25 0.0226 0.1077 0.1315 0.2842

50 0.0594 0.1937 0.0748 0.2159

75 0.1016 0.2524 0.0527 0.1937

95 0.2373 0.4028 0.5274 0.6930

99 1.1885 1.0042 2.8841 1.6796

99.9 9.9539 2.9937 16.8131 4.0560

0.2545 0.3286

logWeib

25 0.0231 0.1074 0.1330 0.2862

50 0.0585 0.1907 0.0738 0.2129

75 0.0971 0.2429 0.0534 0.1970

95 0.3158 0.4950 0.7258 0.8181

99 2.4188 1.4129 4.8112 2.1663

99.9 32.7795 5.6141 45.4473 6.6756

0.4104 0.3584

GPD

25 0.0017 0.1070 0.1026 0.2493

50 0.0062 0.1991 0.0604 0.2010

75 1.8709 1.3121 2.3376 1.4844

95 755.17 26.8771 783.21 27.3695

99 2.0·105 430.82 2.0·105 431.57

99.9 5.9·108 2.1·104 5.9·108 2.1·104

1.1·1011 1996.5

Burr

25 0.0073 0.2000 0.0697 0.2146

50 1.4999 1.0885 1.4432 1.0600

75 65.7098 7.6095 68.3058 7.7819

95 8.6·104 272.76 8.6·104 273.25

99 6.4·107 7733.8 6.4·107 7734.5

99.9 3.5·1012 1.5·106 3.5·1012 1.5·106

8.1·1017 4.2·106

logSα

25 0.0230 0.1081 0.1322 0.2839

50 0.0545 0.1865 0.0689 0.2090

75 0.0876 0.2528 0.0683 0.2144

95 0.7972 0.7504 1.6497 1.2440

99 11.7047 3.1938 16.8163 3.9486

99.9 353.01 17.2799 389.68 18.3389

4.1107 0.4811

SαS

25 0.0190 0.1137 0.0964 0.2457

50 0.0874 0.2288 0.0833 0.2202

75 2.1481 1.3854 2.6382 1.5585

95 620.66 24.3374 645.52 24.8316

99 9.3·104 298.99 9.3·104 299.74

99.9 1.9·108 1.4·104 1.9·108 1.4·104

2.5·108 248.42

Table 31
Average forecast errors for “Human” type aggregated losses. Left panel: errors be-
tween corresponding quantiles; middle panel: errors of forecasted quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss. Fig-
ures are based on 50,000 Monte Carlo samples.45



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.1845 0.3767 0.7813 0.6932

50 0.5499 0.5703 0.6100 0.6027

75 1.0214 0.6848 0.4277 0.4759

95 2.5537 1.4027 2.1662 1.3522

99 17.5320 3.9941 22.9917 4.5137

99.9 372.16 17.7825 423.24 19.5002

4.8553 0.8211

Weib

25 0.1792 0.3718 0.7686 0.6856

50 0.5613 0.5787 0.6226 0.6116

75 1.1229 0.7448 0.4656 0.5072

95 2.2488 0.9302 0.5310 0.6656

99 3.4129 1.3507 1.7793 1.2427

99.9 7.3804 2.3555 8.5875 2.7014

0.6909 0.6418

logWeib

25 0.1815 0.3737 0.7748 0.6895

50 0.5588 0.5765 0.6212 0.6096

75 1.1028 0.7324 0.4556 0.4948

95 2.2039 0.9722 0.6675 0.7635

99 4.0523 1.7245 3.5640 1.7009

99.9 19.5854 4.1441 26.7134 4.7749

0.8050 0.6653

GPD

25 0.1808 0.3723 0.7738 0.6878

50 0.4797 0.5170 0.5314 0.5491

75 1.2251 1.0102 1.0405 0.9499

95 348.86 16.6486 371.07 17.4765

99 7.7·104 241.57 7.8·104 242.82

99.9 4.7·108 1.6·104 4.7·108 1.6·104

1.3·1010 684.34

Burr

25 0.1912 0.3823 0.7968 0.7014

50 0.5625 0.5791 0.6237 0.6119

75 0.9859 0.6680 0.4165 0.4989

95 5.5129 2.1175 6.8680 2.2928

99 204.42 12.6032 232.35 13.8325

99.9 3.3·104 162.51 3.4·104 164.23

3.3·104 2.6236

logSα

25 0.1835 0.3758 0.7795 0.6919

50 0.5532 0.5729 0.6136 0.6059

75 1.0425 0.6940 0.4320 0.4572

95 2.3285 1.2779 1.6237 1.1215

99 14.6743 3.2239 18.9137 3.7639

99.9 327.02 13.9361 367.72 15.6366

3.1026 0.7709

SαS

25 0.1554 0.3542 0.7137 0.6587

50 0.4121 0.4724 0.4522 0.4945

75 3.4738 1.7482 3.8926 1.7777

95 1949.9 42.5619 2010.8 43.3890

99 7.0·105 785.20 7.0·105 786.43

99.9 2.4·109 4.7·104 2.4·109 4.7·104

8.1·1012 1.4·104

Table 32
Average forecast errors for “Processes” type aggregated losses. Left panel: errors
between corresponding quantiles; middle panel: errors of forecasted quantiles rela-
tive to realized loss; right panel: overall error between forecasted and realized loss.
Figures are based on 50,000 Monte Carlo samples.46



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0005 0.0146 0.0011 0.0205

50 0.0008 0.0251 0.0008 0.0256

75 0.0037 0.0514 0.0040 0.0534

95 0.1968 0.4199 0.2118 0.4381

99 3.8728 1.8794 3.9690 1.9052

99.9 154.56 12.1107 155.26 12.1468

29.1823 0.1734

Weib

25 0.0005 0.0149 0.0010 0.0202

50 0.0007 0.0246 0.0008 0.0251

75 0.0023 0.0440 0.0023 0.0422

95 0.0295 0.1628 0.0346 0.1812

99 0.1884 0.4253 0.2090 0.4512

99.9 1.1553 1.0500 1.2259 1.0858

0.0129 0.0537

logWeib

25 0.0005 0.0148 0.0010 0.0204

50 0.0007 0.0243 0.0008 0.0248

75 0.0024 0.0454 0.0025 0.0432

95 0.0404 0.1924 0.0466 0.2106

99 0.3151 0.5512 0.3425 0.5770

99.9 3.2761 1.7834 3.3963 1.8192

0.0271 0.0612

GPD

25 0.0005 0.0140 0.0011 0.0206

50 0.0008 0.0254 0.0008 0.0259

75 0.0178 0.1108 0.0191 0.1176

95 44.4984 5.3895 44.6978 5.4077

99 6.9·104 185.52 6.9·104 185.55

99.9 9.1·108 2.2·104 9.1·108 2.2·104

4.0·1010 1599.5

Burr

25 0.0005 0.0138 0.0011 0.0205

50 0.0010 0.0288 0.0010 0.2927

75 0.1000 0.2734 0.1037 0.2803

95 1838.9 34.7495 1840.1 34.7676

99 2.2·107 3360.1 2.2·107 3360.2

99.9 3.6·1013 3.9·1016 3.6·1013 3.9·106

4.6·1020 9.7·107

logSα

25 0.0005 0.0145 0.0011 0.0204

50 0.0008 0.0251 0.0008 0.0256

75 0.0037 0.0515 0.0041 0.0541

95 0.1965 0.4220 0.2117 0.4403

99 4.4264 1.9974 4.5241 2.0233

99.9 305.95 15.3729 306.88 15.4089

4.6680 0.1680

SαS

25 79.7415 4.1267 79.6492 4.1191

50 1.1·106 443.75 1.1·106 443.75

75 1.0·1011 1.3·105 1.0·1011 1.3·105

95 4.9·1020 8.4·109 4.9·1020 8.4·109

99 1.1·1030 4.0·1014 1.1·1030 4.0·1014

99.9 1.4·1045 1.4·1022 1.4·1045 1.4·1022

4.1·1063 2.4·1029

Table 33
Average forecast errors for “Technology” type aggregated losses. Left panel: errors
between corresponding quantiles; middle panel: errors of forecasted quantiles rela-
tive to realized loss; right panel: overall error between forecasted and realized loss.
Figures are based on 50,000 Monte Carlo samples.47



LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4965 0.5922 0.5585 0.4217 0.4239 0.4130 0.4830

Table 34
Averaged p-values for “Relationship” aggregated losses in the 7-year forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4993 0.5310 0.5204 0.4530 0.4659 0.4115 0.0923

Table 35
Averaged p-values for “Human” aggregated losses in the 7-year forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.2462 0.2392 0.2431 0.2526 0.2433 0.1339 0.2103

Table 36
Averaged p-values for “Processes” aggregated losses in the 7-year forecast period.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.5238 0.5165 0.5107 0.5185 0.5210 0.3354 0.3247

Table 37
Averaged p-values for “Technology” aggregated losses in the 7-year forecast period.
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8 APPENDIX B: Robust Analysis

Sample Descriptive Statistics

Relationship Human Processes Technology

n 806 772 304 63

min ($ ’000,000) 1.07 1.10 1.10 1.13
max ($ ’000,000) 427.09 855.32 1,178 830.00
mean ($ ’000,000) 39.63 45.47 113.31 74.40
median ($ ’000,000) 13.50 11.12 33.61 11.60
st.dev. ($ ’000,000) 59.78 85.41 188.66 134.77
skewness 2.4998 3.4703 2.6273 3.4060
kurtosis 10.1200 19.6686 10.5012 17.5666

Table 38
Descriptive statistics of the 4 types loss data, under the robust analysis in which
highest 5% of data is excluded. Note: due to the small sample size of the “Technol-
ogy” data, all results should be treated with caution.

γ,Fγ(u) Conditional
Relationship Human Processes Technology

LN µ 16.1722 15.6905 17.0090 15.0313
σ 1.7476 2.0691 1.9917 2.8285

Fγ(u) 0.0887 0.1824 0.0544 0.3336
Weib β 0.0003 0.0030 0.0003 0.0120

τ 0.4952 0.3679 0.4671 0.2870
Fγ(u) 0.2259 0.3845 0.1567 0.4697

logWeib β 1.0·10−11 1.8·10−9 9.0·10−12 7.7·10−8

τ 9.1858 7.2258 8.8672 5.8818
Fγ(u) 0.1585 0.2673 0.1056 0.3253

GPD ξ 0.9352 1.2808 1.1848 2.1207
β 1.1·107 0.7·107 2.4·107 0.3·107

Fγ(u) 0.0803 0.1262 0.0394 0.2233
Burr α 2.6845 0.3288 48.4907 0.1643

β 4.1·105 1.6·1011 4.2·105 0.2·105

τ 0.7242 1.7551 0.5125 2.2048
Fγ(u) 0.1315 0.0621 0.1272 0.9650

logSα α 2 2 2 2
β 0.9936 -0.3944 -0.1606 -0.4694
σ 1.2392 1.4700 1.4096 2.0239
µ 16.1656 15.6746 17.0067 14.9627

Fγ(u) 0.0905 0.1865 0.0551 0.3456
SαS α 0.7532 0.6750 0.6087 0.1773

σ 9.6·106 6.7·106 19.9·106 5.7·106

Fγ(u) 0.0781 0.1201 0.0469 0.2931
Table 39
Estimated γ and Fγ(u) values for the conditional distributions fitted to 4 types of
the operational loss data under the robust approach.
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D V A Aup A2 A2
up W 2

LN 1.3111 2.1614 4.5274 209.12 2.8289 34.5294 0.3485
[<0.005] [<0.005] [0.094] [>0.995] [<0.005] [0.031] [<0.005]

Weib 1.0407 1.7907 3.1282 327.36 1.5822 17.8496 0.2144
[0.005] [0.007] [0.241] [>0.995] [<0.005] [0.051] [<0.005]

logWeib 1.0827 1.9746 3.35808 298.45 2.1510 20.5534 0.2989
[0.005] [<0.005] [0.209] [>0.995] [<0.005] [0.061] [<0.005]

GPD 1.6949 3.1270 4.8998 186.58 6.4187 43.6995 0.8247
[<0.005] [<0.005] [0.072] [>0.995] [<0.005] [0.024] [<0.005]

Burr 1.4346 2.6549 4.1987 251.92 4.3188 30.0690 0.5892
[<0.005] [<0.005] [0.091] [>0.995] [<0.005] [<0.005] [<0.005]

logSα 1.3409 2.1544 4.5217 209.27 2.8492 34.7768 0.3579
[<0.005] [<0.005] [0.078] [>0.995] [<0.005] [0.006] [<0.005]

SαS 1.4187 2.7793 6.3995 144.74 5.5682 59.9109 0.6432
[<0.005] [<0.005] [>0.995] [>0.995] [0.444] [>0.995] [<0.005]

Table 40
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the conditional loss distributions fitted to the “Relationship” loss data, under the
robust approach. Smaller statistic values and greater p-values suggest better fit.

D V A Aup A2 A2
up W 2

LN 1.2655 2.0577 3.8877 263.20 1.9615 25.5394 0.2088
[<0.005] [<0.005] [0.129] [>0.995] [<0.005] [0.032] [0.005]

Weib 1.1172 1.9160 3.9489 400.50 1.4831 16.1407 0.1682
[<0.005] [<0.005] [0.124] [0.991] [<0.005] [0.044] [0.2702]

logWeib 1.1910 2.0574 3.7219 375.73 2.1002 17.9457 0.2712
[<0.005] [<0.005] [0.156] [>0.995] [<0.005] [0.065] [<0.005]

GPD 1.4888 2.7433 4.8677 191.47 4.5564 39.6902 0.5588
[<0.005] [<0.005] [0.091] [>0.995] [<0.005] [0.019] [<0.005]

Burr 2.0257 3.4016 6.1192 149.34 7.6553 57.4970 1.1822
[0.006] [0.006] [0.062] [>0.995] [0.006] [0.011] [0.006]

logSα 1.2826 2.0270 3.8906 262.57 1.9443 25.8006 0.2071
[<0.005] [<0.005] [0.122] [>0.995] [<0.005] [0.032] [<0.005]

SαS 1.0613 2.0876 5.1613 258.41 3.3279 38.9658 0.3708
[0.032] [<0.005] [>0.995] [>0.995] [0.990] [>0.995] [<0.005]

Table 41
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the conditional loss distributions fitted to the “Human” loss data, under the robust
approach. Smaller statistic values and greater p-values suggest better fit.
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D V A Aup A2 A2
up W 2

LN 0.9080 1.5288 2.9178 107.11 1.4125 14.0184 0.1825
[0.034] [0.040] [0.249] [>0.995] [<0.005] [0.070] [<0.005]

Weib 0.5271 1.0392 1.8810 163.49 0.5123 6.6792 0.0572
[0.707] [0.582] [0.624] [>0.995] [0.201] [0.137] [0.377]

logWeib 0.5576 1.1087 2.1457 146.86 0.7221 8.0808 0.0811
[0.593] [0.436] [0.499] [>0.995] [0.069] [0.096] [0.162]

GPD 1.1004 2.1675 4.5813 96.7443 3.7234 18.1558 0.4483
[<0.005] [<0.005] [0.097] [>0.995] [<0.005] [0.046] [<0.005]

Burr 0.8113 1.4379 2.3716 185.52 1.0810 6.6638 0.1363
[0.118] [0.109] [0.336] [0.959] [0.021] [0.039] [0.050]

logSα 0.9352 1.5433 2.9087 107.42 1.4381 14.0480 0.1915
[0.028] [0.026] [0.218] [>0.995] [<0.005] [0.056] [0.008]

SαS 1.1692 2.2717 4.3264 77.5942 2.7614 26.4799 0.3115
[0.016] [<0.005] [>0.995] [>0.995] [0.964] [>0.995] [0.016]

Table 42
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the conditional loss distributions fitted to the “Processes” loss data, under the robust
approach. Smaller statistic values and greater p-values suggest better fit.

D V A Aup A2 A2
up W 2

LN 1.0796 1.7451 2.7127 41.1440 1.3364 5.9777 0.1978
[<0.005] [0.005] [0.217] [0.989] [<0.005] [0.080] [<0.005]

Weib 1.0368 1.8359 2.7551 51.8632 1.4171 4.5168 0.2150
[<0.005] [<0.005] [0.210] [0.929] [<0.005] [0.087] [<0.005]

logWeib 1.0358 1.9068 2.9926 50.0593 1.6058 4.7010 0.2408
[0.005] [<0.005] [0.179] [0.971] [<0.005] [0.097] [<0.005]

GPD 1.1362 1.7691 2.8950 32.5285 1.5441 8.3021 0.2295
[<0.005] [<0.005] [0.213] [>0.995] [<0.005] [0.070] [<0.005]

Burr 1.1179 1.8744 2.5384 28.0818 1.8242 9.7598 0.3061
[0.356] [0.344] [0.522] [>0.995] [0.345] [0.361] [0.346]

logSα 1.0877 1.7429 2.7385 40.9965 1.3202 6.0542 0.1961
[<0.005] [0.006] [0.222] [0.990] [0.006] [0.068] [0.006]

SαS 2.8693 2.9544 6.0980 33.9452 19.9170 28.8310 3.7892
[0.918] [0.990] [>0.995] [>0.995] [>0.995] [>0.995] [0.084]

Table 43
Goodness-of-fit test statistics and corresponding p-values (in square brackets) for
the conditional loss distributions fitted to the “Technology” loss data, under the
robust approach. Smaller statistic values and greater p-values suggest better fit.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN

0.0826 0.2068 0.3947 0.3450 0.6560

Weib

0.0638 0.1307 0.1766 0.1604 0.2090

logWeib

- 0.1355 0.1924 - -

GPD

0.3013 0.3627 1.4156 5.2570 23.7687

Burr

0.0732 0.1715 0.3333 0.3131 0.6709

logSα

- 0.2106 0.4006 - -

SαS

- 1.5339 12.2508 - -

Table 44
Estimates of expected aggregated loss, VaR, and CVaR (figures must be further
scaled ×1010) for “Relationship” type losses, under the conditional robust approach.
Figures are based on 50,000 Monte Carlo samples. Where applicable, EL was com-
puted directly as EN × EX.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN

0.1497 0.3953 0.8625 0.7443 1.5569

Weib

0.1095 0.2377 0.3504 0.3096 0.4385

logWeib

- 0.2527 0.3958 - -

GPD

- 1.7932 13.4743 - -

Burr

- 10.6753 161.59 - -

logSα

- 0.4074 0.8983 - -

SαS

- 4.7612 47.7160 - -

Table 45
Estimates of expected aggregated loss, VaR, and CVaR (figures must be further
scaled ×1010) for “Human” type losses, under the conditional robust approach. Fig-
ures are based on 50,000 Monte Carlo samples. Where applicable, EL was computed
directly as EN × EX.
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EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN

0.3188 0.8921 1.9222 1.6858 3.5673

Weib

0.2121 0.4439 0.6272 0.5568 0.7447

logWeib

- 0.4911 0.7287 - -

GPD

- 2.5224 15.4268 - -

Burr

0.1987 0.4053 0.5646 0.5043 0.6731

logSα

- 0.8842 1.8991 - -

SαS

- 2.04·1011 28.9·1011 - -

Table 46
Estimates of expected aggregated loss, VaR, and CVaR (figures must be further
scaled ×1010) for “Processes” type losses, under the conditional robust approach.
Figures are based on 50,000 Monte Carlo samples. Where applicable, EL was com-
puted directly as EN × EX.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

LN

0.0921 0.2617 1.1838 1.3261 4.5793

Weib

0.0334 0.1336 0.3326 0.2787 0.5962

logWeib

- 0.1514 0.4355 - -

GPD

- 1.47·1010 45.1·1010 - -

Burr

- 7.73·1010 801·1010 - -

logSα

- 0.2802 1.2870 - -

SαS

- 5.89·1017 5.60·1021 - -

Table 47
Estimates of expected aggregated loss, VaR, and CVaR (figures must be further
scaled ×1010) for “Technology” type losses, under the conditional robust approach.
Figures are based on 50,000 Monte Carlo samples. Where applicable, EL was com-
puted directly as EN × EX.
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LN Weib logWeib GPD Burr logSα SαS
Relationship

4VaR0.95

VaRclass.
0.95

× 100 56% 59% 59% 77% 89% 52% 66%

4VaR0.99

VaRclass.
0.99

× 100 63% 66% 67% 88% 97% 58% 78%

Human

4VaR0.95

VaRclass.
0.95

× 100 68% 70% 71% 85% 89% 82% 67%

4VaR0.99

VaRclass.
0.99

× 100 75% 78% 79% 92% 95% 79% 77%

Processes

4VaR0.95

VaRclass.
0.95

× 100 65% 65% 67% 88% 78% 65% -

4VaR0.99

VaRclass.
0.99

× 100 71% 71% 73% 94% 87% 72% -

Technology

4VaR0.95

VaRclass.
0.95

× 100 10% 8% 9% - - 6% -

4VaR0.99

VaRclass.
0.99

× 100 7% 8% 8% - - - -

Table 48
Sensitivity of classical VaR to outliers for the 4 types of operational losses. Figures
indicate incremental VaR as the percentage of classical VaR attributed to top 5%
of data. Note: for the “Technology” type losses, excluding the outliers in the data
resulted in heavier-tailed distributions than under the classical analysis. This may
be explained by the estimation inaccuracy due to the small dataset (63 points).
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Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0022 0.0417 0.0018 0.0394

50 0.0040 0.0509 0.0039 0.0502

75 0.0092 0.0753 0.0120 0.0921

95 0.0431 0.1916 0.0629 0.2368

99 0.1704 0.3952 0.2283 0.4617

99.9 1.1851 1.0771 1.3920 1.1685

0.0274 0.0859

Weib

25 0.0018 0.0390 0.0017 0.0367

50 0.0026 0.0446 0.0025 0.0439

75 0.0039 0.0509 0.0055 0.0556

95 0.0083 0.0729 0.0170 0.1181

99 0.0151 0.1069 0.0340 0.1733

99.9 0.0288 0.1583 0.0667 0.2498

0.0052 0.0552

logWeib

25 0.0017 0.0384 0.0016 0.0361

50 0.0025 0.0442 0.0024 0.0436

75 0.0040 0.0512 0.0056 0.0572

95 0.0090 0.0782 0.0183 0.1234

99 0.0182 0.1227 0.0394 0.1892

99.9 0.0475 0.2101 0.0951 0.3017

0.0055 0.0561

GPD

25 0.0023 0.0425 0.0019 0.0403

50 0.0056 0.0563 0.0054 0.0557

75 0.0205 0.1200 0.0249 0.1368

95 0.3315 0.5390 0.3838 0.5842

99 5.3368 2.1998 5.6442 2.2663

99.9 345.46 17.1380 348.73 17.2293

10.6607 0.2400

Burr

25 0.0018 0.0384 0.0016 0.0362

50 0.0033 0.0465 0.0031 0.0459

75 0.0090 0.0781 0.0120 0.0948

95 0.0855 0.2745 0.1132 0.3196

99 0.9772 0.9112 1.1087 0.9777

99.9 31.5765 4.9530 32.5110 5.0443

1.7318 0.1225

logSα

25 0.0006 0.0223 0.0015 0.0353

50 0.0016 0.0284 0.0016 0.0291

75 0.0064 0.0626 0.0078 0.0731

95 0.0899 0.2662 0.1150 0.3099

99 0.6948 0.7844 0.7980 0.8476

99.9 8.5024 2.7599 8.9913 2.8457

0.0844 0.0937

SαS

25 0.0072 0.0643 0.0053 0.0586

50 0.0326 0.1493 0.0321 0.1478

75 0.2309 0.4306 0.2462 0.4474

95 13.7673 3.4414 14.0927 3.4866

99 869.34 27.2307 873.16 27.2970

99.9 5.1·105 674.49 5.1·105 674.58

1.0·105 6.7593

Table 49
Average forecast errors for “Relationship” type aggregated losses, under the robust
approach. Left panel: errors between corresponding quantiles; middle panel: errors
of forecasted quantiles relative to realized loss; right panel: overall error between
forecasted and realized loss. Figures are based on 50,000 Monte Carlo samples.55



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0023 0.0356 0.0029 0.0468

50 0.0050 0.0479 0.0046 0.0465

75 0.0161 0.1099 0.0221 0.1364

95 0.1414 0.3660 0.1997 0.4399

99 0.8455 0.9129 1.0574 1.0231

99.9 10.0861 3.1153 11.0224 3.2675

0.1233 0.1392

Weib

25 0.0021 0.0357 0.0030 0.0477

50 0.0032 0.0413 0.0031 0.0408

75 0.0061 0.0558 0.0090 0.0785

95 0.0221 0.1322 0.0455 0.2062

99 0.0587 0.2302 0.1190 0.3403

99.9 0.2154 0.4556 0.3734 0.6083

0.0123 0.0789

logWeib

25 0.0022 0.0362 0.0030 0.0481

50 0.0034 0.0411 0.0032 0.0406

75 0.0069 0.0589 0.0100 0.0829

95 0.0269 0.1468 0.0526 0.2207

99 0.0820 0.2745 0.1529 0.3846

99.9 0.3523 0.5741 0.5514 0.7270

0.0144 0.0828

GPD

25 0.0033 0.0361 0.0029 0.0428

50 0.0171 0.1118 0.0163 0.1085

75 0.1576 0.3784 0.1783 0.4050

95 10.6869 3.1887 11.1722 3.2626

99 736.10 26.7003 742.06 26.8102

99.9 2.6·105 455.70 2.6·105 455.85

4.9·106 15.7218

Burr

25 0.0174 0.1131 0.0116 0.0828

50 0.2081 0.4244 0.2052 0.4212

75 4.0533 1.9078 4.1594 1.9344

95 1583.8 38.2283 1589.6 38.302

99 5.9·105 721.19 5.9·105 721.30

99.9 4.5·109 6.0·104 4.5·109 6.0·104

3.1·1011 4224.2

logSα

25 0.0024 0.0364 0.0031 0.0484

50 0.0044 0.0431 0.0042 0.0427

75 0.0111 0.0726 0.0151 0.0993

95 0.0651 0.2067 0.1008 0.2807

99 0.3245 0.4564 0.4411 0.5663

99.9 3.5175 1.3713 3.9992 1.5242

0.0430 0.0994

SαS

25 0.0090 0.0731 0.0059 0.0489

50 0.0619 0.2265 0.0604 0.2232

75 0.6697 0.7782 0.7125 0.8048

95 71.5082 8.1565 72.7595 8.5327

99 7551.45 85.2174 7570.7 2661.2

99.9 7.6·106 2661.0 7.6·106 54.9360

5.3·107 54.9360

Table 50
Average forecast errors for “Human” type aggregated losses, under the robust ap-
proach. Left panel: errors between corresponding quantiles; middle panel: errors of
forecasted quantiles relative to realized loss; right panel: overall error between fore-
casted and realized loss. Figures are based on 50,000 Monte Carlo samples.56



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0331 0.1494 0.0516 0.1785

50 0.0392 0.1687 0.0400 0.1704

75 0.0538 0.1963 0.0485 0.1893

95 0.2980 0.4759 0.3717 0.5666

99 1.9817 1.3538 2.3595 1.5047

99.9 22.4811 4.5575 24.1880 4.7621

0.2313 0.2548

Weib

25 0.0332 0.1492 0.0519 0.1783

50 0.0406 0.1697 0.0416 0.1714

75 0.0499 0.1893 0.0385 0.1697

95 0.0791 0.2440 0.0750 0.2330

99 0.1437 0.3271 0.1833 0.3760

99.9 0.3465 0.5078 0.5118 0.6844

0.0537 0.1869

logWeib

25 0.0335 0.1498 0.0524 0.1789

50 0.0405 0.1702 0.0415 0.1720

75 0.0499 0.1893 0.0390 0.1706

95 0.0877 0.2569 0.0924 0.2660

99 0.2033 0.3856 0.2751 0.4826

99.9 0.7410 0.7835 1.0267 0.9885

0.0593 0.1931

GPD

25 0.0033 0.0361 0.0029 0.0428

50 0.0171 0.1118 0.0163 0.1085

75 0.1576 0.3784 0.1783 0.4050

95 10.6869 3.1887 11.1722 3.2626

99 736.10 26.7003 742.06 26.8102

99.9 2.6·105 455.70 2.6·105 455.85

4.9·106 15.7218

Burr

25 0.0174 0.1131 0.0116 0.0828

50 0.2081 0.4244 0.2052 0.4212

75 4.0533 1.9078 4.1594 1.9344

95 1583.8 38.2283 1589.6 38.302

99 5.9·105 721.19 5.9·105 721.30

99.9 4.5·109 6.0·104 4.5·109 6.0·104

3.1·1011 4224.2

logSα

25 0.0024 0.0364 0.0031 0.0484

50 0.0044 0.0431 0.0042 0.0427

75 0.0111 0.0726 0.0151 0.0993

95 0.0651 0.2067 0.1008 0.2807

99 0.3245 0.4564 0.4411 0.5663

99.9 3.5175 1.3713 3.9992 1.5242

0.0430 0.0994

SαS

25 0.0090 0.0731 0.0059 0.0489

50 0.0619 0.2265 0.0604 0.2232

75 0.6697 0.7782 0.7125 0.8048

95 71.5082 8.1565 72.7595 8.5327

99 7551.45 85.2174 7570.7 2661.2

99.9 7.6·106 2661.0 7.6·106 54.9360

5.3·107 54.9360

Table 51
Average forecast errors for “Processes” type aggregated losses, under the robust
approach. Left panel: errors between corresponding quantiles; middle panel: errors
of forecasted quantiles relative to realized loss; right panel: overall error between
forecasted and realized loss. Figures are based on 50,000 Monte Carlo samples.57



Forecasted quantiles vs. Forecasted quantiles vs. Overall error: forecasted
bootstrapped quantiles actual loss vs. actual loss

% MSE (×1020) MAE (×1010) MSE (×1020) MAE (×1010) MAE (×1020) MSE (×1010)

LN

25 0.0005 0.0144 0.0011 0.0206

50 0.0008 0.0247 0.0008 0.0252

75 0.0036 0.0512 0.0039 0.0516

95 0.1906 0.4121 0.2055 0.4303

99 3.9387 1.8837 4.0368 1.9095

99.9 186.07 12.7354 186.96 12.7711

1.2010 0.1449

Weib

25 0.0005 0.0146 0.0011 0.0206

50 0.0007 0.0241 0.0008 0.0246

75 0.0020 0.0427 0.0020 0.0392

95 0.0277 0.1572 0.0326 0.1754

99 0.1928 0.4277 0.2130 0.4534

99.9 1.2291 1.0954 1.3054 1.1315

0.0131 0.0523

logWeib

25 0.0005 0.0147 0.0010 0.0204

50 0.0007 0.0241 0.0008 0.0246

75 0.0021 0.0429 0.0021 0.0401

95 0.0368 0.1830 0.0429 0.2012

99 0.3080 0.5413 0.3367 0.5670

99.9 3.1803 1.7301 3.3058 1.7656

0.0256 0.0590

GPD

25 0.0005 0.0140 0.0011 0.0206

50 0.0008 0.0255 0.0009 0.0260

75 0.0205 0.1151 0.0220 0.1219

95 54.4298 5.6635 54.6411 5.6817

99 1.1·105 228.25 1.1·105 228.27

99.9 2.9·109 3.5·104 2.9·109 3.5·104

2.1·1013 2.4·104

Burr

25 0.0005 0.0138 0.0011 0.0204

50 0.0010 0.0293 0.0011 0.2979

75 0.1533 0.3034 0.1576 0.3103

95 2873.8 39.8687 2875.3 39.8869

99 3.1·107 3789.3 3.1·107 3789.3

99.9 1.8·1013 2.4·1016 1.8·1013 2.4·106

1.0·1021 1.3·108

logSα

25 0.0005 0.0144 0.0011 0.0206

50 0.0008 0.0244 0.0008 0.0249

75 0.0035 0.0505 0.0037 0.0509

95 0.1749 0.4035 0.1896 0.4219

99 3.6596 1.8473 3.7559 1.8731

99.9 186.17 12.0747 187.10 12.1103

4.4229 0.1518

SαS

25 570.47 13.0921 570.22 13.0862

50 4.9·108 1.2·104 4.9·108 1.2·104

75 1.7·1016 6.9·107 1.7·1016 6.9·107

95 1.4·1031 2.0·1015 1.4·1031 2.0·1015

99 4.4·1045 3.0·1022 4.4·1045 3.0·1022

99.9 1.3·1065 1.6·1032 1.3·1065 1.6·1032

7.3·1078 1.0·1037

Table 52
Average forecast errors for “Technology” type aggregated losses, under the robust
approach. Left panel: errors between corresponding quantiles; middle panel: errors
of forecasted quantiles relative to realized loss; right panel: overall error between
forecasted and realized loss. Figures are based on 50,000 Monte Carlo samples.58



LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.5080 0.5260 0.4975 0.4246 0.4410 0.3679 0.5180

Table 53
Averaged p-values for “Relationship” aggregated losses in the 7-year forecast period,
under the robust approach.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.4821 0.4947 0.4774 0.4401 0.4730 0.1443 0.4841

Table 54
Averaged p-values for “Human” aggregated losses in the 7-year forecast period,
under the robust approach.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.2190 0.2008 0.2060 0.2526 0.2433 0.1339 0.2103

Table 55
Averaged p-values for “Processes” aggregated losses in the 7-year forecast period,
under the robust approach.

LN Weib logWeib GPD Burr logSα SαS

Ave. p-value 0.3373 0.3266 0.3278 0.3303 0.3428 0.3392 0.2148

Table 56
Averaged p-values for “Technology” aggregated losses in the 7-year forecast period,
under the robust approach.
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