Extreme Datamining

V.C. Chavez-Demoulin!, S.A. Jarvis?, R. Perera?,
A.S.A. Roehrl*, S'W. Schmied]* & M.P. Sondergaard*

Department of Mathematics, Swiss Federal Institute of Technology', DMA,
1015 Lausanne, Switzerland. e-mail: valerie.chavez@epfl.ch
Department of Computer Science, University of Warwick?, UK

Departamento de Estadistica, Instituto Tecnolégico Auténomo de México®

Approximity GmbH*, Loreleystr. 5, 94315 Straubing, Germany

June 15, 2001

Abstract

In recent years there have been a number of developments in the datamining
techniques used in the analysis of terrabyte-sized logfiles resulting from Internet-
based applications. The information which these datamining techniques pro-
vide allow knowledge engineers to rapidly direct business decisions. Current
datamining methods however, are generally efficient only in the cases when the
information obtained in the logfiles is close to the average. This means that
in cases where non-standard logfiles (extreme data) are being studied, these
methods provide unrealistic and erroneous results. Non-standard logfiles often
have a large bearing on the analysis of web applications, the information which
they provide can impact on new or even well established services. In this pa-
per aspects of the recent Extreme Value Theory methodology are discussed.
Particular emphasis is made to its application; a unique toolkit is provided
with which to describe, understand and predict the non-standard fluctuations

as discovered in real-life Internet-sourced log data.



1 Introduction

With the arrival of the Internet and the ability to store vast amounts of
information by the millisecond, comes the need for sophisticated tools to exam-
ine and interpret this data. It is probable that extreme events form component
parts of this data and, by their nature, hold potentially useful business infor-
mation. Extreme events on the Internet can give rise to huge economic fallouts
and for that reason they can determine the success or failure of many web-based
applications. The precise estimation of such event probabilities therefore, is es-
sential for the proper managing of web-based resources (including features such
as quality of service, request routing and also security).

Analysis of application logfiles makes it is possible to estimate extreme quan-
tiles and therefore measure the probabilities of rare events. These events have

particular impact on the following:

. Load-testing — It is important to be able to estimate target load levels for web-
based applications. Estimations are often sought for the overall growth in the
amount of site traffic, the peak load level which can occur within the overall
traffic, the numbers of users which might ramp-up to that peak load level and

how long that peak load level is expected to last.

. Reliability — The optimal design of new web applications require precise estima-
tions of extreme quantiles of both the operating load and the physical properties

of the system architecture.

. Marketing — Extreme events will effect marketing. Product trends and one off
events can have a huge effect on the traffic and the patterns of users. By describ-
ing the fluctuations caused by these events and by providing precise estimation of

their probabilities, marketing professionals can expose and exploit these events.

. Finance — Extreme data analysis is crucial in this area. Until recently volatility
has been assumed constant in most models, nevertheless new models suggest
that this is wrong. By analysing extreme events it should be possible to deter-
mine causes of high volatility (which will cause the extreme events) as well as

predicting the time at which these events may occur.



Extreme Value Theory (EVT) offers a model in which these factors can be
considered. In a number of cases it has provided useful views on aspects of
extreme data and allowed the derivation of associate solutions. See Embrechts,
Kliippelberg and Mikosch (1997) for detail of the mathematical theory of EVT
and for a discussion of its application to financial and insurance risk manage-
ment!. For further information the authors also recommend the edited volume
Embrechts (2000), in which various papers highlight the current state of the art
on EVT modelling in Integrated Risk Management (IRM).

The traditional approach to EVT is based on extreme value limit distribu-
tions. Here, a model for extreme log data is based on the possible parametric
form of the limit distributions of maxima over independent, identically dis-
tributed (iid) (or weakly dependent) data; Whereas the original data may not
be iid, by considering maxima over blocks of data within certain periods, one
might hope to reduce the data to uncorrelated maxima observations (for de-
tails of this so—called annual maxima method, see Embrechts, Kliippelberg and
Mikosch (1997), p. 317). A more flexible model is based on a so—called point
process characterisation. The resulting Peaks Over Threshold (POT) method
considers exceedances over a threshold u. Mathematical theory (see Davison
2001, Chapter 6) supports the condition of a possibly inhomogeneous Poisson
process with intensity A for the number of exceedances combined with inde-
pendent excesses over the threshold. Given u, the excesses are treated as a
random sample from the generalized Pareto distribution (GPD), with scale pa-
rameter o and shape parameter k. An advantage of the threshold method over
the method of annual maxima is that since each exceedance is associated with
a specific event, it is possible to let the scale and shape parameters depend on
covariates. For instance, website log data can be of different types; a news web-
site typically may belong to various subclasses (sport, news, finance etc.) and
their occurrence shows a non-constant intensity, possibly depending on factors
such as hit cycles, exceptional events etc. Logfile sales data from an e-shop like
Amazon will typically be a function of product prices, user preferences (clus-
ters), time and other information. Extreme log data may become more or less

frequent over time and may become more or less severe. It is also the case that

1Other related articles can be found at www.math.ethz.ch/finance and www.risklab.ch.



in general, they will show cyclic behaviour.

In this paper we discuss some of the more recent EV'T methodology which
may be useful in handling the presence of such covariates and the resulting
modelling of extremal events.

The natural variability of the exceedances tends to mask any trends or
other dependence on time. While variation due to the different covariates such
as type of customers, type of logfiles or server locations could be summarized
parametrically, changes in time need not have a specific parametric form. In this
paper we therefore propose to combine the point process for exceedances with
smoothing methods to give a flexible exploratory approach to model changes in
large values for logfiles data. In doing so, we closely rely on the methodology
developed by Chavez-Demoulin (1999), Chavez-Demoulin and Davison (2001)
in the environmental context and Chavez-Demoulin and Embrechts (2001) in
the financial and insurance context.

A possible model might consist of an inhomogeneous Poisson process for
the number of exceedances, with intensity of the form A(¢) = exp {z"a + f(t)},
combined with the generalized Pareto distribution for the sizes of exceedances
(the excesses) with a parameterisation of the form x(t) = 273 + ¢(t) and
logo(t) = 27~ + s(t) where «, 3 and v are vectors of parameters and f, g and s
are smooth functions (see Section 2 for the basic POT notation). The vector of
covariates = can also depend on time, in particular taking into account possible
discontinuities in A\, k and o, due for example to events such as a worldwide
Internet crisis (such as that seen in April 2000), or a stock market crash (such
as that of March 2000). Other reasons for discontinuous effects include one-off
events such as (in a sporting context) the Olympic games or the football world
championship.

Problems can arise when statistically identifying the functions ¢ and s.
These can be avoided by working with so—called orthogonal parameters. We
might use either the re-parameterisation {k,v(k,0)} such that the parame-
ters k and v are orthogonal with respect to the Fisher information metric or
the re-parameterisation {((k,0), 0} such that the parameters ¢ and o are or-
thogonal. As « is hard to estimate and physically more stable than o, we prefer

to use the parameterisation (k,v). Following the orthogonalisation technique



described in Cox and Reid (1987), we find the parameter v = o(1 + k) to be
orthogonal to . Below, we use v(t) = exp {z7n+ s(¢)}. Whatever statistical
estimation method we use, we are faced with a mixture of a finite dimensional
problem (parameters «, §, n) and an infinite dimensional one (functions f, g,
s). In order to handle the latter, some smoothness assumptions must typically
be made. Estimation algorithms carry a penalty component which is a function
of the amount of smoothness required for the functions f, g, s. We could also
restrict these functions to finitely parameterized classes of functions; we prefer
however to allow the data to define this crucial time dependence and hence
provide a general, versatile model. The construction of such a model requires
semi-parametric techniques. Having observed wy,...,w,, we might estimate
a, B, n, f, g and s using maximum likelihood estimation based on penalized
log-likelihood criteria. A motivation for the use of a procedure based on pe-
nalized log-likelihood is that it treats the entire dataset as a single entity. We
use a Fisher scoring algorithm which has a clear justification through the pe-
nalized log-likelihood and furthermore allows for the incorporation of different
smoothing methods.

The paper is organized as follows: In Section 2 the stochastic techniques
underlying the threshold (POT) method are reviewed. In Section 3 a smoothing
methodology is proposed, this provides a new tool for practical extreme value
exploration of Internet-style log data. The new method is applied and the result

are documented in Section 4.

2 The Threshold Method

The approach based on the threshold method considers a characterisation of all
observations which are extreme in the sense of having exceeded a high thresh-
old u. Consider a sequence of independent and identically distributed random
variables Z1, ..., Z, from a distribution F'(z) in a wide class of continuous dis-
tribution functions. The number of exceedances over the level u has a Pois-
son distribution with mean A and conditional on n exceedances, the excesses

W; = Z; — u are a random sample of size n from the generalized Pareto distri-



bution (GPD)

B 1—(1—kw/o)/*, k#0,
Grow) = {1 —exp(—w/o), k=0.

As k — 0, G o (w) tends to the exponential distribution with mean o. Equation

(1) can be used as the basis for a likelihood for ¢ and & which is

l(o,k) = —nlogo — (1 — 1//@')Zlog(1 — kw;ifo), ,

J=1

and the Poisson Process log-likelihood in term of A, o, k is then

n
I(A,0,k) =nlogA— X —nlogo — (1 —1/k) Zlog(l — Kw;/o)4 .
j=1

In deriving (2), the (asymptotic) independence of the frequency and sizes of
the losses over a high threshold u are used. Maximum likelihood estimation of
the parameters k and o of a generalized Pareto random variable is non-regular
in the sense that the score statistic is not asymptotically normal if x > 1/2
(Davison (1984a, 1984b), Smith (1985)). For x > 1 the GPD has infinite mean
and so, whereas the usual Taylor expansions can be made, they do not yield
a consistent estimator. Typically, in most applications the value of k is close
to zero and consistency and asymptotic efficiency of the maximum likelihood
estimator hold. The generalized Pareto distributions yield a practical family
for statistical estimation, provided that the threshold is taken sufficiently high.

The choice of the threshold is important. Smith (1987) proposes a graphical
technique to get an aid for choosing the threshold and to assess the fit of the
model; a “mean residual life plot” (see Yang (1978)) in which the mean excess
over a threshold u is plotted against u, for a wide range of values u. See
Davison and Smith (1990) and Embrechts, Kliippelberg and Mikosch (1997)
for an extensive discussion of this approach.

The level exceeded on average once in 1/p years (or any other relevant time
period), called the 1/p—year return level, is often a quantity of interest. Based

on the threshold model it’s value is

Yip=1U— % {\/p)©—1}.

(1)

(2)



which may be estimated by replacing o, x and A by their maximum likeli-
hood estimates. Interval estimates may be obtained by the delta method or
by a re-parameterisation in terms of (y;_p, A, k), treating x and A as nuisance
parameters, and solving (3) for . This method is also referred to as the profile
likelihood approach.

Independence of widely separated extremes seems reasonable in most ap-
plications, but they almost always display short-range dependence in which
clusters of extremes occur together. Serial dependence will typically imply
clustering of large values: for example, high sales of a bestseller book tend to
occur together and maxima visits to the sports pages of a news website occur
during the Olympic games. In these cases, it seems unrealistic to assume inde-
pendence within each period (some weeks). In the threshold method, the usual
solution is to fit the point process model to cluster maxima, as the use of the
GPD for the peak excess in each cluster is justified. An important practical
problem is the identification of clusters from data, provided that the cluster size
is random and its distribution depends on the local correlation of the Z;. The
identification of clusters has been influenced by earlier work including Leadbet-
ter et al. (1983), and is a topic of much current research. Following Davison
and Smith (1990), Robinson and Tawn (2000) propose a run approach for both
the choice of a suitable high threshold and of a method to identify independent
clusters, for more details and alternative estimation procedures see Embrechts,
Kliippelberg and Mikosch (1997, Section 8.1).

3 A Methodology for Extreme Datamining

We present a methodology which applies smoothing techniques to extreme
values in the framework of Internet logfiles. In this context there is a need
for exploratory data analysis to gain an understanding of the structure of the
data. The goal of the proposed method is to offer more advanced exploratory
data analysis tools for website management (marketing and operational) in the
presence of extremal events. Theoretical results and details of the approach
are described in Chavez-Demoulin (1999) and Chavez-Demoulin and Davison
(2001).



We see below that the modelling of exceedance times in terms of a Pois-
son process combined with independent excesses over a threshold facilitates the
procedure. It does so by permitting separate modelling of the number of ex-
ceedances and their sizes. Moreover, when modelling the two parameters of
a GPD, it is straightforward to reparameterize the problem using orthogonal
parameters. Chavez-Demoulin (1999) gives an example where a non—orthogonal
parameterisation leads to computational difficulties and non—convergence of the

algorithm. This could arise when smoothing is performed directly on the three

parameters of the generalized extreme value distribution (GEV) H, (“”’91)

02

exp {_(1 - Kx)}l-/n} y K 7é 0,

H(z) =
exp{—exp(—z)}, k=0,

for which it is difficult to find an orthogonal reparameterisation. For the link

between the GPD and the GEV, see Embrechts, Kliippelberg and Mikosch

(1997, Section 3.4).

Suppose a sequence of excesses results from the threshold method for which

where

we recall the basic properties; for detail see Leadbetter (1991):

i) the excesses over a high threshold u occurs at the times of a Poisson
process with intensity A;

ii) the corresponding sizes over u are independent and have a GPD(k, o)
distribution;

iii) exceedance sizes and exceedance times are independent of each other.

The way in which i), ii), and iii) are formulated allows for an immediate
application to the construction of likelihood functions. Hence the resulting
process is of the so—called compound Poisson type. For this process, the overall

log-likelihood in terms of the parameters A, , o is
T

I\ k,0) :z nilog)\i—)\i—nilogai—(1/ni+1)210g{1+miwj/oi} ,

i=1 j=1
where T is the observed number of time periods (the number of years, say), n; is
the number of exceedances during the ith year, and wy = 2 —u, k=1,..., N,
are the excesses, having observed a total number of N = > n; data z1,..., 2y

over a threshold u. Due to the following “cut” of the log-likelihood
(A k,0) =1(A\) +U(k,0),



estimation can be performed separately for the point process of exceedance
times and for the excesses. Based on Leadbetter’s results, semi-parametric
models for exceedance times and excesses can be proposed.

Assuming an inhomogeneous Poisson process for the exceedance times, with
intensity A(t) = exp {xTa +f (t)}, the point process part defines a semi-parametric
generalized linear model within the Poisson family. Following the approach of
Green and Yandell (1985), we use the Fisher scoring algorithm to maximize the

penalized log-likelihood

)~ 50 / £(t)2 dt,

where 7, is a smoothing parameter. Estimation and inference procedures are
customary for the exponential family (Green and Silverman, 1994).

Consider the semi-parametric generalized Pareto model. Our aim is to fit
k(t) =278+ g(t), v(t) = exp{z’n+ s(t)}, and for that reason, attempt to

maximize the penalized log-likelihood

1 b 1 b
tn) = g [ 9"t = 0 [ 07 at, (@)
where 7, and 7, control the degree of smoothing applied to the shape and scale

parameters respectively. Here,

T n;
l(k,v) = Z [nZ log(1 + &;) + nilogy; — (1/k; + 1) Zlog{l + ki (L4 ki) wjvi}]| -

i=1 j=1

Details of the estimation process are given in Chavez-Demoulin (1999). A pro-
cedure can be implemented to estimate simultaneously the parameters x and v.
Inference in semi-parametric models for the GPD uses results for semi-parametric
generalized linear models or generalized additive models.

For the non-parametric component, we justify the use of simultaneous tests
based on deviances for the two models by the orthogonality of the parameters x
and v. That is, applications show that deviance test results for one model do
not depend on the other parameter model form. Furthermore, for smoothing
parameter selection we recommend the use of criteria such as AIC; see McQuar-
rie and Tsai (1998). The behaviour of AIC curves for one parameter remains

unchanged by a modification of the smooth function for the other parameter.
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Use of appropriate degrees of freedom in conjunction with deviances allows
for the assessment of model adequacy. A possible general approach to assess
uncertainty for semi-parametric GPD estimates is to use bootstrap methods.
A bootstrapping strategy is based on the result that, given the model is correct,

the residuals
RJ:f%Jllog{1+/%jW](1+/%])ﬁ]}, ]:1,,N, (5)

are distributed approximately as independent, unit exponential random vari-

ables. We define simulated responses by

_ 1+ exp {/%je;}

Wr = j=1,...,N, 6
I R (L + &) 7 J (6)
where €}, ..., €}y is a random sample from the residuals R; defined in (5). This

leads to basic bootstrap confidence intervals for 5 and .

To summarize, the following general guidelines should be considered when
applying the methodology:

a) Decide upon a model form for each parameter A\, x and v. In practice
the Poisson process for the exceedance times is not necessarily homogeneous
and hence a smoothing of A = A(t) over ¢ is appropriate. Additionally, the
parameter x which controls the weight of the tail of the extremal distribution
is generally hard to estimate and a fully parametric form x = 27 often suf-
fices. The scale parameter o (and hence v) may vary much more with external
explanatory variables.

b) The choice of the smoothing parameters depends on the aim of the anal-
ysis. If the aim is purely exploratory, the smoothers can be modified to suit the
situation by changing the degrees of freedom. If an automatic procedure for
selecting the smoothing parameters is required, we recommend the use of crite-
ria such as AIC rather than cross—validation, which becomes computationally
costly when the size of the data increases.

¢) Informal inference based on deviance tests is also useful to assess mod-
els and their differences separately for each parameter. Uncertainty about the
parameter estimates is assessed by constructing confidence intervals. For the
non-parametric component, plots of pointwise confidence bands around the fit-

ted curve yield useful visual tools. Procedures based on residuals are also useful
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Figure 1: A simulation study. 20-return level estimates from 100 simulated samples
(points around the solid line) and minimal exceedances (points). The solid line repre-
sents the “true” 20-return levels.

to assess the goodness—of-fit of the model. A possible graphical diagnostic is
based on the result that the residuals (5) are distributed approximately as in-
dependent unit exponential variables when the model is correct.

For details on accuracy of the method see Chavez-Demoulin, 1999 where a
number of simulations are presented. Figure 1 provides an example of the sim-
ulation results showing 100 estimated 20-return levels for minimal exceedances
in an environmental context. The solid lines representing the “true” 20-return
level, providing credible values for the bias and variance which one can expect

when estimating the GPD parameters.

4 An Application

The capability of the extreme value methodology is considered. We present
(in Figure 2) the changing quantitative behaviour in extreme observations above
some given threshold. A typical data set might include the number of hits of the

k pages of a website, each recorded as an excess above some threshold value u;,
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Figure 2: e-shop data. The points are the values of the excesses of sales (big sales
exceeding a certain limit minus the threshold) for four types of product of a well-known
e-shop against time (50 weeks). The straight lines are the 8-weeks return levels and
their 90% confidence interval (dotted lines).

t=1,...,k. One could also consider the e-shop value of sales over a given
time period for k different product types, or indeed losses above given retention
limits (thresholds). In each case, a measure of the loading risk or risk can be
given; the 1/p return level is then considered. Objectively, we want to model
Y1—p as a function of time: i.e. is y;_, constant or changing in time, and if the
latter is the case, how does y;_, change with time? We might also consider
whether y,_, depend on the page or type of product which the site presents?
As an example, Figure 2 represents the sales (in US dollars) across k = 4
types of product of a well-known website (after some preprocessing) over a pe-
riod of 50 weeks. The points correspond to the values of the excess of sales,
that is, the large sales figures exceeding a certain limit minus the threshold.
For each product, we chose a non-parametric threshold form such that about

5% of the original data are excesses. Following the methodology developed in
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the previous section, we fit different models for A, x and v and compare them
using tests based on the likelihood ratio statistics. After an extreme value anal-
ysis, we obtain the estimated quantile of interest as a function of time for each
product type. The figure shows (in straight lines) the 8-weeks return level,
that is the level crossed on average once in 8 weeks. The dotted lines are the

corresponding 90%-bootstrap confidence intervals based on the residuals.

There are a number of ways in which these results can be used.

e Marketing - Understanding the extreme values which the datamining identifies
allows marketing strategies to highlight and respond to future extreme periods.
This might include seasons, campaigns, geography, time-zones and product seg-

ments etc.

e Managing Extreme Values - It is important to understand the impact of extreme
values on the business. For example, the change in corresponding productivity
of other business areas during a period of extreme sales. This will be benefi-
cial to choosing the right fit between strategy, customer expectations and the

capabilities of the organisation.

e Security — By performing multi-scale analysis on a number of different time-
frames it is possible to quickly and effectively detect denial of service attacks
(automatic page requesting at a rate which is designed to crash the server). This
analysis is possible both at the packet level and also at a level higher in the

protocol stack.

e Future Planning - EVT provides the skilled strategist with a tool for making
future assumptions and for deducing the strengths and opportunities of the or-
ganisation at some point in time. The identification of previous extreme values
allows greater certainty in price positioning and the selection of entire value

propositions.

5 Conclusion

Popular web services are now generating huge quantities of log data. The ex-

ample e-shop application documented in this paper currently produces approx-



imately 5 gigabytes of logfile-data per hour. Results on this scale are difficult
to analyse with conventional tools; it is also the case that current datamining
methods are generally only efficient in the cases when the information obtained
in the logfiles is close to the average. Studying non-standard logfiles (extreme
data) can provide important additional information to a business.

A new model for extreme datamining is presented. This is based on the
recent extreme value theory methodology. Our motivation for the use of a
semi-parametric procedure based on penalized log-likelihood is that it treats
the entire dataset as a single entity. This provides a natural approach to the
analysis of Internet-sourced log data. We provide a supporting tool-kit based
on this model with which a large real-life case study is tested and documented.

The identification of extreme values can have a large bearing on web-based
applications. Extreme datamining offers precision to marketing strategies, al-
lows the management of extreme values, provides a mechanism for monitoring

security and a basis on which future business plans can be honed.
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