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Abstract

The high computational complexity of many problems in finan-

cial decision-making has prevented the development of time-

efficient deterministic solution algorithms so far. At least for

some of these problems, e.g., constrained portfolio selection or

non-linear time series prediction problems, the results from com-

plexity theory indicate that there is no way to avoid this problem.

Due to the practical importance of these problems, we require 

algorithms for finding optimal or near-optimal solutions within

reasonable computing time. Hence, heuristic approaches are an

interesting alternative to classical approximation algorithms for

such problems. Over the last years many interesting ideas for heu-

ristic approaches were developed and tested for financial 

decision-making. We present an overview of the relevant metho-

dology, and some applications that show interesting results for 

selected problems in finance. 

1. Introduction

It is one of the goals of computational finance to develop methods

and algorithms to support decision making. Unfortunately, many

problems of practical or theoretical interest are too complex to be

solvable exactly by a deterministic algorithm in reasonable com-

puting time, e.g., using a method that applies a simple closed-

form analytical expression. Such problems require approximation

procedures which provide sufficiently good solutions while re-

quiring less computational effort compared to an exact algorithm.

Heuristic approaches are a class of algorithms which have been

developed to fulfil these requirements in many problem contexts.

Today, there are many different paradigms for heuristic ap-

proaches which have been tested in several fields of application.

Particularly in the last ten years, a growing number of applications

in the area of finance were investigated. Comparing the tremen-

dous variability of the different heuristic approaches, it is often

difficult to decide which heuristic method should be applied to a

given financial problem setting. To support the right choice

among different heuristic approaches we gather their basic cha-

racteristics with a special focus on financial applications. In the

following text we mainly introduce the core methodology of dif-

ferent heuristics and present many references which cover theo-

retical aspects, e.g., convergence properties or parameter choice,

and a selection of successful applications in finance. Before dis-

cussing the modern heuristic approaches, we will first point out

a formal view of complexity and a classical local search algorithm

in the following section. 

2. Complexity of finance problems and local
search algorithms

A widely accepted formal definition of complex problems is the

computational intractability of problems which are hard to solve

from an algorithmic perspective, i.e., we require huge computa-

tional resources to compute the exact solution of a problem 

having input size n (e.g., an exponential number 2n of necessary

calculations for n given input variables of the considered pro-

blem). Besides other complexity classifications, the theory of NP-
completeness yields a well-defined formalisation of such complex

problems, see e.g., Garey & Johnson [1] for a detailed coverage of

this topic and a large collection of NP-complete problems. Until

now, there is no known algorithm which requires only a polyno-

mial number of computational steps depending on the input size

n for an arbitrarily chosen problem that belongs to the class of NP-
complete problems. See e.g., Papadimitriou [2] for the formal

definitions of computational complexity and further implications. 

Many problems in finance belong to the class of NP-complete pro-

blems, since they have a combinatorial structure which is equi-

valent (with respect to polynomial-time reductions) to well-known

NP-complete problems, e.g., constrained portfolio selection and re-

lated questions of asset allocation are equivalent to NP-complete
knapsack problems. Cf. Seese & Schlottmann [3] for such com-

plexity results. 

Therefore, we require approximation algorithms that yield suffi-

ciently good solutions for complex finance problems and con-

sume only polynomial computational resources measured by the

size of the respective problem instance (e.g., number of indepen-

dent variables). For some complex problem settings and under

certain assumptions, particularly linearity or convexity of target

functions in optimization problems, there are analytical approxi-

mation algorithms which provide a fast method of finding solu-

tions having a guaranteed quality of lying within an ε-region

around the globally best solution(s). If the considered problem in-

stance allows the necessary restrictions for the application of such

algorithms, these are the preferred choice, see Ausiello et al. [4]

for such considerations. However, some applications in finance

require non-linear, non-convex functions (e.g., valuation of exotic

option contracts), and sometimes we know only the data (para-

meters) but not the functional dependency between them (bank-

ruptcy prediction problems for instance), so there is nevertheless

a need for methods that search for good solutions in difficult pro-

blem settings while spending only relatively small computational

cost. This is the justification for heuristic approaches. 
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Almost all heuristics that are discussed in this survey belong to 

local search algorithms. This means that for a given current solu-

tion xi to the problem which is to be solved, a promising solution

candidate which can be derived by small modifications of xi is to

be chosen to continue the search for the globally best solutions.

The set of solutions which are close to xi will be called the local

neighbourhood N(xi) of  xi in the following text. The exact defini-

tion of N(xi) is problem-specific, and an adequate choice for a 

given problem is often crucial for the success of a certain algo-

rithm. Most heuristics require an initial solution from which they

start their search for improvement. In many cases, a random ini-

tialisation of this initial solution yields the best outcome of the re-

spective problem solving method on average, i.e., over all possi-

ble instances for a fixed problem class. 

A standard local search algorithm is Hill Climbing (HC) which ba-

sically works as shown in Algorithm 1. The algorithm moves from

the current solution xi to a solution xj from the neighbourhood of

xi if and only if xj is better than xi concerning the problem to be

solved, otherwise the algorithm stops and returns xi as the candi-

date for the globally best solution (in the following text, ϕ deno-

tes a sample target function that is to be maximized by the 

respective algorithm). 

Algorithm 1. Hill Climbing

Input: Initial solution xj

i := 1 (iteration counter)
Repeat  

Set current solution xi := xj

Generate neighbourhood N(xi)
Choose the best solution xj ∈ N(xi)
If ϕ(xj) > ϕ(xi) Then

TerminateSearch := False
i := i + 1

Else

TerminateSearch := True   
Until TerminateSearch := True
Terminate

Output: Best solution found xi

There are many examples of such HC procedures for solving 

finance problems in the standard literature, so we do not consi-

der them here in detail. Usually, analytically tractable problems

can be solved using Newton’s method or other gradient-based 

approaches. On the other hand, if the problem to be solved con-

tains non-linear, non-convex functions and/or integer constraints,

such a local search procedure that decides about the next move

solely based on local information in the neighbourhood of   xi, can

get stuck in suboptimal solutions without discovering the global-

ly best (optimal) solution throughout the search process. The me-

thods described in the following sections try to avoid this problem

by using certain strategies, e.g., for choosing the next solution xj

to be investigated or for deciding about the termination of the se-

arch process. Beside the more specific references appearing in the

text, general overviews of the concepts presented below can e.g.,

be found in Reeves [5], Osman & Kelly [6], Aarts & Lenstra [7], 

Fogel & Michalewicz [8], Pham & Karaboga [9] and Nelles [10]

which cover a variety of methods and mostly non-financial appli-

cations. A more finance-related, recent survey on a subset of the

methods discussed below is Chen’s book [11]. 

3. Simulated Annealing

The basic working principle of Simulated Annealing (SA) is an

analogy to conducting thermodynamical annealing processes in

a heath bath to obtain low-energy states for a solid (cf. Kirkpatrick

et al. [12] and Cerny [13]). A simulation algorithm for such a ther-

modynamical process was introduced in 1953 by Metropolis et al.

[14], and the so-called Metropolis criterion proposed in their work

is also the central part of the SA heuristic that is shown in Algo-

rithm 2 (Zi ∈ [0, 1] are assumed to be independently and identi-

cally distributed uniform random variates). 

Algorithm 2. Simulated Annealing

Input: Initial solution xj, parameter value T1 ∈ RR
i := 1 (iteration counter)
xbest := xj (best solution found so far)
Repeat 

Set current solution xi := xj

Randomly choose a solution xj ∈ N(xi)
If ϕ(xj) > ϕ(xbest) Then

xbest := xj

If ϕ(xj) > ϕ(xi) Then

TerminateSearch := False
Else

If Zi < e                      Then

TerminateSearch := False
i := i + 1
Adapt Ti according to predefined rule (cooling  schedule)

Else

TerminateSearch := True
Until TerminateSearch = True
Terminate

Output: Best solution found xbest

The parameter Ti which represents the temperature in the heat

bath conducts the annealing process. In analogy to the Metropo-

lis criterion, the SA algorithm not only accepts a better solution

xj with probability 1, but also a deterioration of the current solu-

tion with probability e .  For an optimal low-energy

state of the solid to be annealed, an appropriate cooling schedule

is required for Ti, and this is also crucial if the SA heuristic is

applied to finance problems. Aarts et al. [16] provide a thorough

analysis of the convergence properties of the SA heuristic using

Markov chains, some guidelines for choosing appropriate cooling

schedules and many references to applications of the SA heuris-

tic. Here, the main convergence results are shortly summarized

ϕ(xi) – ϕ(xj)

Ti

ϕ(xi) – ϕ(xj)

Ti
_

_
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by the following theorem (for more details see [16]): 

Theorem 1. Assuming an appropriate cooling schedule for Ti in the
SA algorithm, xi converges to a globally optimal solution with proba-
bility 1 for i −> ∞ (i is the number of iterations of the loop in Algo-
rithm 2).

Regrettably, this does neither hold for a finite number of itera-

tions, nor for an arbitrary cooling schedule. Nevertheless, there

are many reports of successful SA applications in the literature,

particularly in other areas than finance. A sample finance appli-

cation was e.g., built by Chang et al. [17] who applied different

heuristics including SA to constrained and unconstrained port-

folio selection problems. Their goal was to identify the mean-

variance efficient frontier (cf. e.g., Markowitz [18]) for given sets

of alternative investments. Besides the good results for smaller

problems from the Hang Seng, DAX, FTSE or S & P stock mar-

ket indices, the SA heuristic found a good approximation of a con-

strained efficient frontier for a draw of 10 from 225 alternative in-

vestments from the Nikkei stock market index in less than 10 

minutes on a single workstation computer. 

4. Threshold Accepting

The Threshold Accepting (TA) heuristic was introduced in 1990 by

Dueck & Scheurer [19] as a simplification of Simulated 

Annealing. Instead of applying the Metropolis criterion to decide

about the acceptance of a deterioration of the current solution (cf.

Algorithm 2), TA uses a straightforward threshold parameter Ti

for the maximum deterioration of the current solution that is ac-

cepted without terminating the algorithm. Like the temperature

cooling schedule in SA, an adaptation rule for Ti is necessary to

ensure proper convergence, and the choice of this adaptation rule

is a crucial point when applying TA to a problem. Moreover, it has

to be emphasized that the success of TA depends heavily on the

proper modelling of a neighbourhood N(xi) for any possible 

solution xi. There are both deterministic and non-deterministic 

variants of TA depending on the adaptation of Ti . 

Algorithm 3. Threshold Accepting  

Input: Initial solution xj, initial parameter T1  ∈ RR , T1 > 0,
iteration limit imax  ∈ NN

i := 1 (iteration counter)
xbest := xj (best solution found so far)
Repeat  

Set current solution xi := xj

Randomly choose a solution xj ∈ N(xi)
If ϕ(xj) > ϕ(xbest) Then

xbest := xj

If ϕ(xi) - ϕ(xj) < Ti Then

TerminateSearch := False
i := i + 1
Adapt Ti according to predefined rule

Else

TerminateSearch := True   
Until i > imax Or TerminateSearch = True
Terminate

Output: Best solution found xbest

The convergence results for TA are similar to the results for SA

(cf. Theorem 1), i.e., they use Markov chain results to derive con-

vergence properties of the algorithm. A good source for many

aspects of TA including theoretical aspects as well as econometric

applications is Winker [23]. 

Both Dueck & Winker [20] and Gilli & Kellezi [21] applied TA to

portfolio selection problems. Their respective objective was to

find the optimal asset allocation that is efficient concerning the

aggregate portfolio risk as well as the aggregate portfolio return

for a mean-variance approach or a mean/downside risk approach.

The studies incorporated the successful application of TA to ana-

lytically intractable optimization problems. 

Gilli & Kellezi [22] reported the application of TA to an index 

tracking problem, where the goal of a so-called passive investor was

to minimize the difference between his tracking portfolio and a

given market index (a stock index like Dow Jones Industrial Ave-

rage for instance) under constraints, e.g., rebalancing and trans-

action cost, round lots etc. Even for a large number of 528 assets,

the TA heuristic found a good approximation for the optimal 

tracking portfolio within less than one minute on a Personal Com-

puter. 

5. Tabu Search

The main ideas of Tabu Search (TS) were formulated by Glover

[24] and Hansen [25]. This heuristic is different from the other ap-

proaches discussed in this survey because it explicitly keeps track

of the activities that were performed in the problem solving pro-

cess so far and tries to conduct this process towards relevant so-

lutions by forbidding certain activities that have already been per-

formed. To achieve this, the definition of a move is the central con-

cept in TS. A move from a current solution xi is the operator that

yields a neighbourhood N(xi), i.e., the (usually small) modifica-

tion applied to xi to obtain N(xi). TS keeps a Tabu List of maxi-

mum length k that contains the most recently performed moves

throughout the problem solving process. These moves are not

considered for the next move to be performed, i.e., they are tabu

(cf. taboo). An obvious advantage of memorizing recently perfor-

med moves instead of recently investigated solutions is that the

former method usually requires less memory. The length k of the

Tabu List is a crucial parameter for a given problem. If the list is

too short the search for optimal solutions might run into a loop

(recently visited solutions are revisited again and again), and if the

list is too long the algorithm may not find optimal solutions that

require the repeated application of certain moves. Algorithm 4

shows an overview of the TS local search method. 

The material is taken from: Rachev, S. (Ed.): Handbook of Computational and Numerical Methods in Finance, Birkhäuser, Boston, 2004, pp. 331-360.  © 2004 Birkhäuser, Boston.   
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Algorithm 4. Tabu Search  

Input: Initial solution xj, iteration limit imax  ∈ NN
i := 1 (iteration counter)
xbest := xj (best solution found so far)
T := ø (tabu list)
Repeat  

Set current solution xi := xj

Generate neighbourhood N(xi) for xi using a move mi ∉ T
Choose the best solution xj ∈ N(xi)
If ϕ(xj) > ϕ(xbest) Then

xbest := xj

i := i + 1
Update T according to predefined rule

Until i > imax

Terminate

Output: Best solution found xbest

The update procedure for T in Algorithm 4 usually consists of the

operation T := T ∪ {mi}, and the least recently used move mj is re-

moved from the list by T := T \ {mj} (First-In-First-Out principle).

In addition, different strategies (aspiration of tabu criteria, and 

intensification as well as diversification concerning search regions)

are discussed in the literature to enhance the performance of the

algorithm and to avoid the above mentioned problems of a too res-

tricted search for better solutions. See e.g., Glover & Laguna [26]

for a detailed coverage of these and further details of TS. A short

introduction and a selection of non-finance TS applications are

e.g., given by Hertz et al. [27]. 

Glover et al. [28] reported a successful application of TS to a

multi-period asset allocation problem using a time-dependent

mean-variance approach with non-convex constraints which 

allow for modelling taxes, transaction cost etc. For the absence of

taxes and transaction cost in a problem containing 8 assets and

20 time periods, the results of the TS algorithm were nearly iden-

tical to an ε-analytical approximative approach for the efficient

frontier. When these constraints were included to obtain an ana-

lytically intractable problem structure, the TS algorithm also

found an approximation of the mean-variance efficient frontier

within 17 minutes on a workstation. 

The study of Chang et al. [17], which has already been cited in the

Simulated Annealing section, also contains results of a TS appli-

cation for mean-variance portfolio selection problems. TS 

showed a similar performance like Simulated Annealing in the

study, being slightly better in some cases and slightly worse in 

other concerning the quality of the solutions found, and having a

similar runtime of e.g., about 10 minutes for an approximation

of the mean-variance efficient frontier in a constrained portfolio 

selection problem for 10 assets from the Nikkei-225 stock market

index.

6. Evolutionary Computation

Some problem solving mechanisms like selection, reproduction

and mutation which can be observed in natural environments and

populations are the basic working principles for Evolutionary
Computation (EC). The history of EC started in the 1950s (see 

DeJong et al. [29] for an overview of such early work). In the

1960s, Fogel et al. [30] developed the concepts of Evolutionary 
Programming, which was followed later by Koza’s introduction of

Genetic Programming (GP) [31,32,33], Holland [34] proposed the

Genetic Algorithm (GA) and Rechenberg [35] and Schwefel [36] in-

troduced the Evolution Strategies (ES) (cf. also [29]). Since the

1990s these evolutionary approaches have attracted many 

research activities due to their interesting theoretical properties

as well as their successful applications. We will concentrate on the

GA and GP methodology because of their dominance concerning

finance applications. A good source for many aspects of EC are

Baeck et al. [37,38] and the annual conference proceedings of

GECCO (e.g., [39]). 

6.1. Genetic Algorithms

GAs are randomised heuristic search algorithms reflecting the

Darwinian survival of the fittest principle that can be observed in

many natural evolution processes. A GA works on a set of n
potential solutions to a problem rather than on a single solution.

The current set of solutions being processed by a GA at each time

step t of the algorithm is called population or generation P(t) =
{x, y, ...}, ⏐P(t)⏐= n, and each x ∈ P(t) is called an individual. To 

apply a GA to a problem, the decision variables have to be trans-

formed into gene strings, i.e. each element from the decision 

variable space D has to be transformed into a string consisting of

digits or characters in the search space of the algorithm S by app-

lying a 1-1 function g : D −> S . The original representation x ∈ D
is called phenotype, the genetic counterpart g(x) ∈ S is called 

genotype. For the sake of simplicity, we will not distinguish 

between x and g(x) in the following text. We will denote the length

of the gene string x by length(x). A simple GA scheme is shown

in Algorithm 5. 

Algorithm 5. Genetic Algorithm

Input: Iteration limit tmax  ∈ NN
t := 0 (population counter)
Generate initial population P(t)
Evaluate P(t)
Repeat  

Select individuals from P(t)
Recombine selected individuals
Mutate recombined individuals
Create offspring population P’(t)
Evaluate P’(t)
Generate P(t + 1)
t := t + 1

Until t > tmax

Output: P(t)

The material is taken from: Rachev, S. (Ed.): Handbook of Computational and Numerical Methods in Finance, Birkhäuser, Boston, 2004, pp. 331-360.  © 2004 Birkhäuser, Boston.   
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The initial population P(0) can be generated e.g., by random ini-

tialisation of every individual. For evaluation of each individual 

x ∈P(t) the GA requires a so-called fitness function f which is de-

fined either on the set of possible genotypes S or the set of phe-

notypes D. Usually, the fitness function is defined on D and takes

real values, i.e., f : D −> RR. This function expresses the quality of

the solution represented by the individual. It is problem specific

and therefore, it has to be designed according to the problem 

parameters and constraints. During the evolution process the GA

selects individuals for reproduction from the current population

P(t) according to their fitness value, i.e., the probability of survi-

ving or creating offspring for the next population P(t + 1) is hig-

her for individuals having higher fitness values. The intention of 

selection is to guide the evolution process towards the most pro-

mising solutions. A common method is tournament selection, 

where the fitness values f(x), f(y) of two randomly drawn indivi-

duals x, y ∈P(t) are compared, and the winner is determined by

the rule f(x) > f(y) ⇒ x survives,  f(x) < f(y) ⇒ y survives,

f(x) = f(y) ⇒ x, y survive. For an overview and a comparison of 

selection methods, see part 3 of Baeck et al. [37]. 

Since the GA’s task is to explore the search space S to find globally

optimal and feasible solutions, e.g., x* = maxx∈S’  f(x) in a con-

strained maximisation problem where S’ S specifies the space

of feasible solutions, the selected individuals from each P(t) are

modified using genetic operators, sometimes called variation 
operators (cf. Fogel & Michalewicz [8], p. 173). A typical variation 

operator for recombination is the one-point crossover, i.e., the

gene strings of two selected individuals are cut at a randomly 

chosen position and the resulting tail parts are exchanged with

each other to produce two new offspring. This variation operator

is applied to the selected individuals using a problem specific

crossover probability Probcross. Common values are Probcross ∈
(0.6, 1) . The main goal of this operator is to conduct the simula-

ted evolution process through the search space S. Most GAs im-

plement a second variation operator called mutation. In analogy

to natural mutation, this operator randomly changes the genes of

selected individuals with the parameter Probmut per gene to allow

the invention of new, previously undiscovered solutions in the 

population. Its second task is the prevention of the GA stalling in

local optima because of high selection pressure since there is 

always a positive probability to leave a local optimum if 

Probmut > 0. Usually, Probmut is set small, e.g., Probmut u .

For a survey of different variation operators see e.g., part 6 of Ba-

eck et al. [37]. The creation of P(t + 1) is usually performed by se-

lecting the n best individuals either from the offspring populati-

on P’(t) or from the joint population containing both the parent

and the offspring individuals P(t) ∪ P’(t). 

The evolution of individuals during the GA’s search process can

be modelled by Markov chains (cf. e.g., Rudolph [40]). There are

different results concerning the convergence of the GA popula-

tion towards global optimal solutions depending on the fitness

function, properties of the search space etc., see e.g., Muehlen-

bein [41], Droste et al. [42], Vose [43], Wegener [44]. Despite the

theoretical value of these results, they can only provide some 

rules of thumb for proper genetic modelling of most application-

oriented problems, for choosing adequate fitness functions, 

selection mechanisms, variation operators and parameters like n, 

Probcross, Probmut. These choices are not necessarily independent

from each other, e.g., the choice of the fitness function is im-

portant for the selection mechanism and vice versa. As a conse-

quence, there is currently no GA fitting each application-oriented

context. Therefore, most application studies focus on empirical

evaluations of problem specific GAs. 

A very natural application of GAs is the modelling of a group of

individual entities, e.g., traders in financial markets, to observe

the emerging macro-level output (e.g., asset prices) from indivi-

dual decisions. Such approaches benefit from the fact that the GA

provides a built-in adaptation mechanism through its evolution

process which can be used to model individuals that try to im-

prove their financial decisions by processing historical informati-

on. An introduction to such approaches in economics is given by 

Riechmann [45]. The study by Rieck [46] and the Santa Fe artifi-

cial stock market (see e.g., Tayler [47]) are two examples for early

studies that analyzed asset prices resulting from individual deci-

sions made by artificial traders which are improved by a GA. 

Meanwhile, there is a large number of similar approaches which

analyze e.g., asset price time series properties (cf. LeBaron et al.

[48]), the Efficient Market Hypothesis (cf. Coche [49], Farmer &

Lo [50]) and further questions related to real-world asset markets. 

Another common field of GA applications in finance is the dis-

covery and the classification of patterns in financial data, e.g., for

evaluation of counterparties in credit scoring models (cf. e.g.,

Walker et al. [51]), for detecting insider trading (cf. e.g., Mott [52])

or for the identification of successful trading strategies in stock

markets (cf. e.g., Frick et al. [53]). The book by Bauer [54] covers

many aspects of such approaches. An interesting application in

this context is Tsang & Lajbcygier’s [56] modified GA framework

for the discovery of successful foreign exchange trading strategies

in historical data. It uses a split population that is divided into a

group of individuals which is modified using a higher mutation

probability, and another group of individuals which is changed

with a low mutation probability. The modified GA found strate-

gies yielding higher mean returns while having similar return

standard deviations than a standard GA, but both approaches

showed advantages over the other in certain test criteria. 

6.2. Genetic Programming

The concept of GP is very similar to the GA paradigm, since it

uses the same elements like selection, reproduction and mutation

in its core and implements the same scheme like Algorithm 5.

However, there is a significant difference concerning the genetic

representation of the individuals in the considered population as

e.g., pointed out by Koza et al. [33], p. 31: 

Genetic programming is an extension of the genetic algorithm in which
the genetic population contains computer programs. 

1
length (x)

⊇
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Rather than being genetic representations of single solutions, the

genotypes in a GP algorithm represent programs that are candi-

dates for solving the considered problem. The most widely used

representation is the Automatically Defined Function by Koza [32]

where a program is represented by a syntax tree containing va-

riables and operators that can be used to formulate mathematical

expressions which are similar to those that can be formulated in

the programming language LISP. These expressions are evalua-

ted by setting the variables’ contents to different input parameter

sets which are instances of the problem to be solved. The output

of this evaluation yields a fitness value for the program concer-

ning the problem to be solved. For a further discussion of 

different representations see e.g., Langdon & Poli [57], p. 9 ff. 

Therefore, at each step t the population P(t) contains different

programs each of which is evaluated by running it on a number

of instances (i.e., input parameter values) for the given problem

type and observing its performance (cf. the fitness evaluation in a

GA). The methods to prove convergence of P(t) to globally opti-

mal solutions (i.e., programs which solve the given problem in-

stances well concerning pre-defined performance criteria), are 

similar to the GA convergence analysis methods and partially,

yield even the same convergence properties like GAs. For a 

detailed discussion of these topics see also [57]. 

An obvious application of GP is the approximation of a priori un-

known functional dependencies: Given different sets of input 

parameter values and their associated output values, the goal is to

find a function that describes the dependency of the output on the

input approximately. This kind of GP application was e.g., used

by Keber [58] to find closed-form approximations for valuing

American put options on non-dividend paying stocks instead of

using finite differences (cf. Brennan & Schwarz [59]) or the tree

approach by Cox et al. [60]. Keber compared the results of a GP-

based search for an approximation formula to frequently quoted

approximation procedures in the literature which differ from the

two numerical approaches cited above. The best formula found by

his GP approach was quite similar in its structure to some of the

existing approximations, but it outperformed the other approxi-

mations concerning the numerical accuracy of the resulting 

option values both on a standard test data set used by several ot-

her studies and on another large sample of theoretical American

put option prices. 

In a series of papers (see [61] for further references), Li & Tsang

developed a GP approach to support investment decisions. They

used a decision tree containing rules like ’IF Condition Is Met

THEN Buy Asset’ which was improved by GP using daily asset

price data of 10 US stocks. They compared the results on the test

data to the results of both a linear classification approach and pro-

blem-specific Artificial Neural Networks obtained by another 

study and found that the GP approach yielded better results (i.e.,

higher excess returns) on their test data set. For a related problem

setting, where a GP algorithm was used to solve a multi-period

constrained asset allocation problem for an Italian pension fund

see Baglioni et al. [62]. 

Similar to the studies cited in the GA section which model indi-

vidual decision-making and adaptation of rules in a dynamic 

environment, there are also applications of the GP methodology

to study properties of artificial financial markets. See e.g., Chen

& Kuo [63] and Chen [11] for a more detailed coverage of this 

subject. 

7. Artificial Neural Networks

An Artificial Neural Network (ANN) is a computing model which

is built in analogy to the structure of the human brain. A remar-

kable work which introduced such a computing model based on

artificial neurons was published by McCulloch and Pitts in 1943

[64]. But it took about 40 years until the ANN approach (someti-

mes called connectionist approach) reached a wide-spread interest

during the 1980s. Since then, many successful real-world appli-

cations have been reported, from which we will cite some 

finance-related examples below after a brief introduction to some

methodic details. 

An ANN consists of m ∈ NN artificial neurons, where each neuron

j ∈ {1, ..., m} represents a small computation unit performing 

basic functionality, e.g., taking the values of a vector x containing 

sj  ∈ NN variables xi  ∈ RR, i ∈ {1, ..., sj} as input, which are modi-

fied by an activation function aj, and calculating its output, deno-

ted by outputj, from the sum of the activation function values aj(xi)
according to a specified output function oj  as follows: 

sj

outputj := oj ( Σ aj(xi)). (7.1)
i=1

In many applications, the functions aj are linear functions of the

type f(x) := wijxi  and the oj are non-linear functions like 

f(x) = tanh(x) (tangens hyperbolicus) or f(x) = 
(logistic function). Each wij is called weight of the input value i for

neuron j . 

To obtain more computational power, the neurons can be con-

nected pairwise by directed links, e.g., connecting the output of

neuron i with the input of neuron j. From a graph theoretic point

of view, each neuron in an ANN can be represented by a vertex

and each link between two neurons can be modelled by a directed

edge between their vertices. There are different kinds of ANN 

paradigms depending on the theoretical and/or application con-

text. We focus on the Multi-Layer-Perceptron (MLP) paradigm here

since it is a widely used neural computing model in finance 

applications. A discussion of major ANN computing models is

e.g., given by Schalkoff [65]. Arbib’s handbook [66] contains a 

large collection of papers concerning all kinds of ANNs. 

Kohonen’s book [67] is the standard reference for the Self 
Organizing Map ANN paradigm which we do not cover here, 

while Deboeck & Kohonen [68] contains some interesting finan-

cial applications of this paradigm. A survey of recent work con-

cerning this ANN model is given in Seiffert & Jain [69]. 

1

1 – e - x
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given ε < 0 . It is interesting to note here that g is not needed in

functional form, since it is sufficient to know the correct output

M(x) for each training vector x. This is particularly important for

data mining applications in finance where a priori unknown in-

formation has to be learned from data sets and for other applica-

tions like nonparametric prediction problems, where the functio-

nal dependencies between exogeneous and endogeneous varia-

bles are a priori unknown. 

There are different methods discussed in the literature to adapt

the weights according to an error function during training. Most

of these methods use the gradient of the quadratic error function

(7.2) for neuron j:
1

errj(xi) = — (outputj (xi) - tj (xi))2 (7.2)

2
where xi is the input vector and tj(xi) is the desired output from

neuron j for this input. Probably due to its simplicity, the most 

popular method for training a MLP net using this scheme is back-
propagation. It works basically as follows: A training vector x is

presented, the net computes its output M(x), and the error is com-

puted by applying (7.2) to all output neurons. Afterwards, the gra-

dient values of this error function are computed for the weights

of the incoming links of the output neurons, and these weights

are adapted by ∂
Δ wij = -  η — errj (7.3)

∂wij

A MLP network M usually consists of n ≥ 3 layers L1, L2, ..., Ln,

each containing at least one neuron. The first layer L1 is called in-
put layer, the last layer Ln is called output layer. All possible layers

between the input and the output layers are called hidden layers.
The connections between the neurons build a simple structure:

The output of each neuron in layer Lk is connected to the input of

each neuron in its succeeding layer Lk+1 except for all neurons in

Ln. There are no other links in this ANN topology. An example is

shown in Figure 1. 

A single computation step in a MLP network M works as follows:

Each component value of an input vector x = (xi)i=1, ...,⏐L1⏐ is put

directly into the corresponding neuron i of the input layer L1. The

output value from every input neuron i resulting by evaluation of

oi(xi) is propagated to each neuron j of the first hidden layer L2.

Each neuron j ∈ L2 calculates its output value from these input

values according to equation (7.1). These results are propagated

to the next layer and so on. Finally, the output values of the neu-

rons in layer Ln are the total output M(x) of the MLP network for

the given input vector x. Due to this computing method, the MLP

is a feed forward network. 

To use this computation scheme for an approximation of a given

target function g, a proper learning method (training) is needed.

Training a MLP network means starting from a random initiali-

sation of the weights wij which have to be adapted in a way so that

for any training vector x the total output of the network M(x) gets

very close to the known result of g(x), i.e., ⏐M(x) - g(x)⏐< ε for a

neuron

j

neuron

i

weight

wij

input

layer L1

input

layer L2

input

layer Ln

Figure 1: Multi-Layer-Perceptron Network

The material is taken from: Rachev, S. (Ed.): Handbook of Computational and Numerical Methods in Finance, Birkhäuser, Boston, 2004, pp. 331-360.  © 2004 Birkhäuser, Boston.   
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where η ∈ (0, 1) is a global parameter of the MLP net called 

learning rate. This process is repeated from the output neuron 

layer Ln to the preceding hidden neuron layer Ln-1, and so on 

until the input neuron layer is reached (see [70] for further de-

tails). As the name of this training method states, the network 

error is propagated backwards through the MLP network. It is

easy to see that backpropagation and related gradient descent me-

thods can particularly run into potential local minima of the error

function or oscillate in steep valleys of the error function, there-

fore a number of modifications are discussed in the literature to

restrict these problems, e.g., by using second-order derivatives or

conjugate gradient approaches, see e.g., Hecht-Nielsen [71] for an

overview. 

After training of an appropriately constructed MLP network, the

network should be able to ’know’ the functional dependence bet-

ween an input vector x and the resulting output g(x). Therefore,

the network can be used for generalisation, i.e., a number of new

input vectors x not used during the training process can be pre-

sented to the network and the network outputs M(x) will be con-

sidered as an approximation of the usually unknown values of

g(x). This is comparable to the application of non-linear regres-

sion models, e.g., for time series prediction. 

To obtain a good generalisation capability of a MLP, the problem

of overfitting has to be avoided: Many instances show that the 

generalisation capabilities of trained MLPs will be sub-optimal if

the MLP memorises the training vectors perfectly. There are dif-

ferent strategies to overcome this situation, e.g., by an early ter-

mination of the learning process before final convergence of the

weights. For a discussion of this problem and its avoidance see

e.g., [65], p. 195ff. 

An interesting result concerning the general approximation 

capabilities of MLP networks is the following theorem by Hornik

[72]: 

Theorem 2. Given a measure μ, a distance ε > 0  and assuming the
presence of one hidden layer using bounded, non-constant activation
functions aj, there is an MLP which can ε-approximate any function 
f ∈ LP(μ), where LP(μ) := { f :∫RRn ⏐f(x)⏐P d μ(x) < ∞ }. 

There are many other results proving the approximation capabi-

lities of ANNs for other restrictions on the target functions, the

activation or output functions (see Anthony and Bartlett [73] for a

detailed theoretical analysis). A little disadvantage of all these 

proofs is that they do not provide exact construction guidelines for

ANNs in applications. So the topology of the network, particularly

the number of necessary hidden layer neurons which has a strong

influence on the approximation properties and further parame-

ters have to be chosen e.g., by empirical tests or by experiences

from similar cases in each application context. However, a gene-

ral guideline for adequate ANN modelling and validation in 

finance applications is provided by Zapranis and Refenes in [74]. 

Due to the difficulty of selecting an adequate ANN topology and

the necessary parameters for a given problem, many recent stu-

dies combine ANNs with other machine learning or optimization

concepts in the following sense: The given problem is solved by

different ANNs and a meta-learning algorithm observes the per-

formance of the ANNs on the problem. The meta-learning algo-

rithm tries to improve the ANNs by varying their topology, their

parameters etc. We will return to this point in section 9. 

Many finance-related ANN applications used MLP networks for

the prediction of time series, e.g., daily stock returns [75], futures

contracts prices [76], real estate returns [77] or three-year default

probabilities of companies [78]. Refenes [79] provides a good sur-

vey on selected ANN applications for equities (e.g., modelling

stock returns, testing the Efficient Markets Hypothesis), foreign

exchange prices (e.g., prediction of exchange rates, development

of trading rules), bond markets and other economic data. 

A standard application of ANNs for classification purposes in 

finance are bankruptcy prediction and related tasks like bond 

rating, obligor classification into rating categories, etc. Besides 

other finance-related ANN topics, Trippi and Turban [80] offer a

collection of such classification applications. Other examples are

Odom and Sharda [81], Coleman et al. [82], McLeod et al. [83], 

Baetge and Krause [84], Wilson and Sharda [85]. Most of these stu-

dies reported better empirical classification performance of Neu-

ral Networks in comparison to standard models like discriminant

analysis (for a description of this method see e.g., [86]) or linear

regression, except for the study of Altman et al. [87]. A better per-

formance of ANNs is not surprising from a theoretical view if we

consider the non-linear approximation abilities of the ANNs (see

Theorem 2 above) compared to the limited capabilities of linear

models. 

The learning capabilities of ANNs can be used for modelling

adaptive traders in artificial markets to study the macro-level be-

haviour of such markets, e.g., measured by asset prices, depen-

ding on the micro-level decision strategies and learning capabili-

ties of the traders (cf. also our remarks in the GA section). See e.g.,

Beltratti et al. [88] for examples of such models. 

A number of articles studied the approximation capabilities of

MLP networks for option valuation purposes, e.g., Mallaris and

Salchenberger [89], Hutchinson et al. [90], Lajbcygier et al. [91],

Hanke [92], Herrmann and Narr [93]. Lajbcygier [94] gives a 

review of related work. An interesting observation in [90] was that

a small MLP network using only four hidden neurons in one 

hidden layer and backpropagation training yielded a good appro-

ximation of the results obtained by applying the Black/Scholes

formula (cf. [95], [96]) to given option pricing parameters (e.g.,

the mean R2 over different option pricing parameters was 

R2 = .9948). Furthermore, a narrative conclusion of all the above

studies is that the results from the training of ANNs using mar-

ket data can yield a significantly better approximation of option

prices compared to closed form option pricing formulas. 

The material is taken from: Rachev, S. (Ed.): Handbook of Computational and Numerical Methods in Finance, Birkhäuser, Boston, 2004, pp. 331-360.  © 2004 Birkhäuser, Boston.   
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Locarek-Junge and Prinzler [97] applied MLPs and backpro-

pagation to market risk (here: Value-at-Risk) estimation where the

goal of the calculation is to estimate a certain α-percentile 

(e.g., α = .99) of the distribution of future losses from a portfolio

whose value depends on a fixed number of market risk factors.

They used a Gaussian Mixture Density Network (cf. [98] for de-

tails) defined by the following equations:

m

fX⏐Z=z(x) = ( Σ ai(z)hi(x⏐z), (7.4)
i=1

hi(x⏐z) = (2 π)1/2 σi
-l(z)e ,     (7.5)

where ai ≥ 0, Σiai = 1 were the mixture parameters to be estima-

ted by a MLP network backpropagation training that minimised

the maximum likelihood error function of the specified model 

given historical observations of market risk factor changes Z and

historical target function values (market risk returns) X. The 

results from the Mixture Density Network estimation for a

USD/DEM exchange rate dependent sample portfolio were com-

pared to the results from a historical simulation (see e.g., Jorion

[99]) and from a variance-covariance approach proposed by the

RiskMetricsTM model [100]. The Neural Network based approach

yielded a better estimate particularly for the α = .99 percentile if

at least two different ai had to be determined by the learning pro-

cess, i.e., if there were two or more densities to be included in the

mixture. 

Naim et al. [101] combined MLP networks as a forecasting tool

for financial markets with ideas from asset allocation for portfo-

lio management. Their considerations rely on the predictability of

real-world asset returns by ANNs. An interesting remark pointed

out by Naim et al. is the explicit difference between a two-step 

approach that separates the prediction of the necessary asset 

parameters by ANNs from the portfolio choice problem, and an

integrated approach that optimizes both the prediction error and

the portfolio choice alternatives in one backpropagation training

process. The results of an empirical study simulating a strategic

asset allocation problem using data from G7 countries’ capital

markets indicated that the two-step approach was dominated by

the integrated approach. The annualised return was higher and

the standard deviation was even smaller for the portfolio calcula-

ted by the latter approach compared to the portfolio resulting from

the two-step approach running on the same data set. Both me-

thods were significantly better than a standard Markowitz [18]

mean-variance portfolio selection procedure based on historical

estimation of parameters from the data set.

Bonilla et al. [102] used MLP nets trained by backpropagation to

forecast exchange rate volatilities of six currencies against the 

Spanish Peseta from historical observations and compared the re-

sults to different parametric GARCH-type models (see e.g., [103]

for an overview of volatility modelling). In their study the MLP

nets’ forecasting accuracy was superior for three currencies and

inferior for the other three currencies, but the results of the cases

where the MLP nets were superior to the parametric models were

significantly better than the cases where the MLP networks were

inferior. 

In general, ANNs were successfully applied to many non-linear

and complex finance problems, e.g., time series prediction, clas-

sification and modelling of learning entities in financial simula-

tions. This is especially true for MLPs which are the most widely

used ANN computing paradigm in finance. The success of ANNs

is mainly caused by their excellent approximation capabilities for

non-linear dependencies that are even theoretically justified for

many classes of functions. But besides the achieved results, an

exact algorithm for constructing a suitable ANN for a given, arbi-

trary problem has not been found yet. It is still a matter of 

experiments and experiences to construct an adequate ANN, the-

refore this is considered to be a challenge for hybrid approaches

discussed later in this article. And it must be emphasized that

many approximation capability proofs assume a large or even in-

finite number of neurons in the ANN resulting in a significantly

larger number of weights to be adapted. The dimension of the cor-

responding weight optimization problem usually grows over-pro-

portional in the number of neurons, therefore the resulting lear-

ning problem will get very complex if we have to use many neu-

rons in our finance applications. More precisely, the problem of

learning in an MLP is NP-complete (see [104] for an overview of 

related results). Finally, it has to be kept in mind that an ANN ap-

proach is mainly a data driven problem solving method, i.e., the

availability of sufficiently representative, high-quality data sets is

a crucial point in all ANN applications. 

8. Fuzzy Logic

In contrast to the approaches which have been presented so far in

this survey, Fuzzy Logic (FL) is not a local search algorithm, but a

heuristic approach invented in 1965 by Zadeh [105] that supports

the use of vaguely defined variables in calculations and logical in-

ferences. 

Figure 2: Linguistic variable for asset return

IIx – μi(z)II2

2σ2(z)
i

_
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The building block of the FL framework is a so-called fuzzy set

which is a generalization of a set in the traditional sense of 

Cantor. In traditional (in Fuzzy theory also called crisp) sets, each

element e from a universe of discourse U can either be member

of a set A U (denoted by e ∈ A) or not be member of A (e ∉ A).

Using a membership function mA : U −> {0, 1} this can be model-

led as follows:

1 e ∈ A,
∀e ∈ U : mA(e) =      0   otherwise (7.6)

A fuzzy set generalizes this definition by allowing arbitrary func-

tions of the type mA : U −> [0,1] to express the degree of mem-

bership of an element e from U to the set A. Therefore, a fuzzy set

over U is defined by the pair FA := (U, mA) where mA is the mem-

bership function of FA. The usual set operations were originally

generalized by Zadeh [105] as follows:

Given are two fuzzy sets FA := (U, mA) and FB := (U, mB).

• The complement of FA is Fc
A := (U, mc

A) satisfying  

∀e ∈ U : mc
A(e):= 1 - mA(e). 

• The union FC = FA ∪ FB where FC := (U, mC) is obtained by 

setting ∀e ∈ U : mC(e):= max {mA(e), mB(e)}. 

• The intersection FC = FA ∩ FB where FC := (U, mC) is defined 

by ∀e ∈ U : mC(e):= min {mA(e), mB(e)}. 

Based on these properties, relations between fuzzy sets and an

arithmetic for fuzzy numbers can be defined, see e.g., Klir

[107,108] for a detailed coverage of these topics. 

An important goal of fuzzy modelling in applications is computing
with words. Since computations on a machine have to be done by

using accurate numbers while human problem solving methods

are often more heuristically, FL is commonly used as an interface

between problem solving knowledge stated in a natural language

and corresponding computations in exact arithmetic to be per-

formed by a machine. For this functionality, the concept of 

linguistic variables is essential. A linguistic variable L is a tupel 

L := (V, T, U, G, M) where V is the name of the variable, T is the

domain of linguistic terms for V, U is the domain of crisp values

for V (universe of discourse), G is the syntax rule (grammar) for

building the linguistic terms and M is the semantic rule that as-

signs a fuzzy set Ft to each t ∈ T. Figure 2 shows an example for

a linguistic variable that describes asset returns. 

Using such linguistic variables, many FL applications incorporate

fuzzy rules. Assume we have defined the following linguistic 

variables: 

Linput  :=(Vinput , Tinput , Uinput , Ginput , Minput), (7.7)

Loutput  :=(Voutput , Toutput , Uoutput , Goutput , Moutput). (7.8)

{

Then we can formulate rules of the following form: 

Ri  : IF Vinput  = t1  THEN Voutput  = t2 (7.9)

where t1 ∈ Tinput and t2 ∈ Toutput. The input (independent) varia-

ble is described by the linguistic variable Linput , and the output

(dependent) variable is defined using the linguistic variable

Loutput . A fuzzy system uses a rule base RB containing k ∈ NN such

rules R1, ..., Rk. Note that both the input and the output variables

in (7.9) can be aggregations of different linguistic variables using

the fuzzy set operators (negation, intersection, union etc.) for

combining the fuzzy values of linguistic variables. To use the fuz-

zy system e.g., for the approximation of the crisp output g(e) that

belongs a given crisp input e ∈ U for a function g : U −> RR, the

rule base has to contain rules describing the functional depen-

dence between the input and the output using fuzzy rules like

(7.9). These rules are usually heuristic interpretations of the de-

pendence between the crisp input and the crisp output variables.

They can either be maintained by a human expert, or be genera-

ted and adapted for instance by a local search algorithm. 

Algorithm 6. Fuzzy System Computation

Input: crisp value e ∈U, fuzzy rule base RB    
Fuzzificate e    
∀Ri ∈RB:Aggregation of IF condition to determine rule fulfilment of Ri 

∀Ri ∈RB:Activation of Ri to calculate output activation (THEN part) 
Accumulation of the output of all Ri ∈RB to obtain output fuzzy set  
Defuzzification of the output fuzzy set to obtain crisp output(e)  
Output: output(e)

Assuming the presence of adequate rules in the rule base, the 

fuzzy system computes the crisp output(e) which approximates

g(e) for a given arbitrary, but fixed crisp input e ∈U using the

scheme shown in Algorithm 6 (cf. Nelles [10], p. 304). There are

a number of aggregation, activation, accumulation and defuzzifi-

cation schemes in the literature depending on the type of fuzzy

system and the application context. See also Nelles [10], p. 304 ff.

for an overview. 

Concerning the approximation capability of fuzzy systems, Wang

[109] proved the following interesting result (cf. his original work

for a more precise formulation that includes the specification of

the fuzzy system used in the proof, and also Kosko [110] for 

further approximation results): 

Theorem 3. Given is an arbitrary function g : U −> RR where U is a
(crisp) compact subset of RRn, and a real number ε > 0. Then there is
a fuzzy system such that supe ∈U⏐output(e) - g(e)⏐< ε. 

A natural field for FL applications in finance are rule-based sys-

tems which have to deal with vague, non-quantitative or uncertain

inputs. The book by von Altrock [111] covers the basic fuzzy sys-

tem methodology which is necessary for real-world implementa-

tions, and a variety of applications concerning the creditworthi-

ness check of obligors, fraud detection etc. 

⊇
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Rommelfanger [112] describes a fuzzy system for checking the

credit solvency of small companies. It is based on lingustic varia-

bles e.g., for inputs like market share, market growth, rate of in-

novation and contains rules like ’IF MarketShare = positive AND

MarketGrowth = medium AND RateOfInnovation = medium

THEN Sales = positive’ which were provided by human experts.

The system is used by a German bank to evaluate potential obli-

gors in a credit rating process. Similar applications were reported

e.g., by Weber [113], and in the book by Ruan et al. [114]. This book

contains a selection of other recent FL applications in finance and

risk management, e.g., several articles concerning the interesting

difference between using probabilistic decision theory or making

fuzzy decisions in risky situations, an application of FL in electri-

city market pricing, and a contribution that proposes a Discoun-

ted Fuzzy Cash Flow model for capital budgeting.

In the same volume, Korolev et al. [115] extended Merton’s model

[116] of the valuation of a premium for bank deposit insurance

which had originally used the Black/Scholes option pricing for-

mula [95, 96] to determine the risk-based premium. In their 

study the Black/Scholes valuation framework is extended by con-

sidering a so-called Fuzzy Valued Asset as the underlying, i.e., the

crisp stock price in the Black/Scholes framework is replaced

using a fuzzy set on the payoff scale as the universe of discourse.

According to Korolev et al., the use of the fuzzy underlying parti-

cularly avoids the criticism against the original Merton model

which used a rather unrealistic crisp payoff structure generated

by the crisp stock price, and makes the model more useful for real-

world applications. 

9. Hybrid Approaches

All problem solving approaches discussed in the preceding 

sections (and of course, also other methods which were not men-

tioned above) inhibit certain strengths and certain weaknesses.

For instance, HC is a very fast local search method that causes low

computational cost but suffers from the danger of getting stuck

in sub-optimal solutions. In contrast to this trade-off, randomized

algorithms like SA, TA and EC use heuristic mechanisms to re-

duce the risk of early convergence to sub-optimal solutions at the

price of slower convergence speed and potentially higher compu-

tational cost to find reasonably good solutions. This observation

suggests the combination of different problem solving methods

to emphasize the overall benefits of the resulting, so-called hybrid
approach and obtain less weakness of the combined approach

compared to the sum of individual weaknesses of its ingredients.

Of course, the combination should use the minimum number of

different methods which leads to the desired properties of the 

hybrid approach, otherwise it will be difficult to analyse and pre-

dict its behaviour. See e.g., Fogel & Michaelwicz [8], p. 391 ff. for

a discussion of these issues.

Moreover, all problem solving methods presented in the prece-

ding sections require an adequate representation of the parame-

ters of the problem to be solved as well as initial parameter 

values which lead to a desired performance of the respective pro-

blem solving method. An appropriate combination of methods

can be used to derive both the necessary parameters to obtain

good solutions and the solutions themself, which will provide

strong support to the user who has to determine the parameters 

manually, otherwise. 

For an overview of different general aspects of hybridization as

well as a classification of different approaches, see Goonatilake &

Khebbal [117]. The book by Abraham & Koeppen [118] contains a

selection of recent developments in the area of hybrid systems,

while Rutkowska’s recent book [119] particularly covers the 

fusion of ANN and FL. This topic is also addressed by Jin [120],

as well as the integration of EC and FL. While these and many 

other surveys concentrate on non-finance problems, we will now

consider some financial applications. 

Since the mid- and late 1990s, many hybrid systems for the sup-

port of asset trading in financial markets have been created and

integrated into commercial trading platforms. Besides the huge

number of commercial products and software in this area there

are also many academic publications which report successful ap-

plications of hybrid methods. For instance, Herrmann et al. [123]

created a combination of a GA and a fuzzy system to support equi-

ty traders. The GA worked on a population of individuals, each of

which represented a FL rule base consisting of rules like ’IF 

PriceEarningsRatio = high AND AverageTradingVolume = high

THEN buy’. For each individual, both the rules themself and the 

fuzzy membership functions used in the linguistic variables were

optimized by the GA using daily stock price information of the 30

companies listed in the German DAX index over a period of 

seven years. The hybrid system e.g., yielded a positive excess re-

turn over the DAX index performance in 66% to 75% of the 

fuzzy rule applications. 

Siekmann et al. [124] used a combination of ANN and FL 

(NeuroFuzzy system) to predict the sign of the daily returns of the 

German DAX index. The fuzzy system rule base contained rules 

based on different technical indicators in the ’IF’-condition which

were evaluated using historical stock price information, and the

fuzzy conclusion in the ’THEN’ part was either ’NextDailyDAX-

Return = positive’, ’NextDailyDAXReturn = neutral’ or ’NextDai-

lyDAXReturn = negative’. An MLP network was used to represent

the fuzzy system rules, which were initially provided by a human

expert, and this network was trained using daily DAX returns. The

goal of the MLP training was to remove inappropriate rules from

the fuzzy system by pruning their representing nodes from the

MLP network, and to adapt the membership functions of the 

linguistic variables in the remaining fuzzy rules. After the trai-

ning, the remaining rules were applied to an additional test set

containing daily DAX returns not used in the training, and the tra-

ding rules based on the prediction by the NeuroFuzzy system e.g.,

yielded a much higher daily return than naive trading rules based

The material is taken from: Rachev, S. (Ed.): Handbook of Computational and Numerical Methods in Finance, Birkhäuser, Boston, 2004, pp. 331-360.  © 2004 Birkhäuser, Boston.   
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on the previous change of the DAX or than the fuzzy system 

rules originally provided by the human expert. 

For another study that has a similar focus, but discusses the 

hybridisation of ANN and GA to support trading decisions in the

US 30-year T-bond future market, see Harland [125]. 

In a series of recent papers we proposed a hybrid approach that

combined GA and HC to compute risk-return efficient portfolio

structures for a discrete set of credit portfolio investment alterna-

tives under constraints. The hybrid approach was implemented

and empirically tested both using a single objective function that

related the total net risk adjusted return to the total unexpected

loss (measured by downside risk) of a given credit portfolio (cf.

Schlottmann & Seese [126]), and using two separate objective

functions for risk and return (cf. Schlottmann & Seese [127])). For

instance, in the latter study the hybrid approach required 3 

minutes to find an approximation for a constrained, global Pare-

to-efficient set based on 20 assets on a standard Personal Com-

puter, while the upper computational bound for this problem de-

termined by a complete enumeration of the search space was 72

minutes. Moreover, the hybrid approach showed higher conver-

gence speed towards feasible, optimal solutions while consuming

low additional computational resources compared to its GA coun-

terpart without the additional HC component. 

The above examples of successful hybridisation in financial con-

texts are the basis for some conclusions and possible future re-

search directions which are derived in the final section below. 

10. Conclusions

In the preceding sections we have discussed different heuristic

approaches which were successfully applied to a variety of com-

plex financial problems. The respective results underline the fact

that heuristic approaches are an interesting alternative to other

problem solving algorithms e.g., if a problem is computationally

very hard, if the problem’s parameters cannot be defined using

exact bounds or if the functional dependency between input and

output and/or the set of input parameters is a priori unknown. 

However, we have also pointed out that besides the advantages,

there are certain design problems when choosing a heuristic 

approach. The representation of the exogeneous variables (e.g.,

decision variables), the parameters of the heuristic algorithm, etc.

have to be chosen carefully to obtain good results, and this is it-

self a non-trivial and in many cases complex task. Beyond that, the

early success of certain heuristic approaches, e.g., ANNs, caused

too high expectations towards the results, which simply had to

create disappointment due to the complexity and sometimes the

dynamics of the problems to be solved, for example in stock mar-

ket analysis and prediction. 

Moreover, none of the heuristic approaches fits into all problem

contexts and some were especially useful in certain problem set-

tings. For example, the stochastic search heuristics like Simula-

ted Annealing, Threshold Accepting, Tabu Search as well as the

different methods from the Evolutionary Computation paradigm

were particularly successful in combinatorial problems while 

Artificial Neural Networks mainly yielded good results for func-

tion approximation, e.g., in non-parametric, non-linear regressi-

on. Evolutionary Computation is also a natural approach to 

modelling evolving and learning financial entities, and Fuzzy 

Logic is the first choice for problems which cannot be modelled

well using crisp numbers or crisp sets. 

Much recent academic effort in the area of heuristics has been

spent on hybrid methods, which try to combine the strengths of

different approaches. These methods seem to be promising for

future studies developing modern heuristics in the finance con-

text since many of them incorporate an estimation mechanism

that determines necessary algorithmic parameters instead of re-

lying on trial-and-error experiments by the user. We think that

another crucial point for future success is the explicit exploitation

of problem-specific financial knowledge in the algorithms inste-

ad of applying the standard heuristic algorithm scheme to the 

problem under consideration. The flexibility of many of the heu-

ristic approaches discussed in our survey concerning the integra-

tion of problem-specific knowledge is the true strength and one

of the best justifications for choosing such methods. 
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triebskanäle für die Themen Altersvorsorge, Baufinanzierung,

Vermögensanalyse und Financial Planning.

Produktkalkulation

MARZIPAN™ ist die Lösung zur Produktberatung und -kalkulati-

on von Aktiv- und Passivgeschäften auf Basis der Marktzins- und

Barwertmethode.

FinanceFactory™ ist das regelbasierte Kalkulationssystem für die

Absatzfinanzierung, das alle Darlehensvarianten der Absatzfinanzie-

rung inklusive Restkreditversicherung und Subventionsrechnung

abdeckt. 

Gesamtbanksteuerung

THINC™ ist die integrierte Softwarelösung zur wertorientierten

Gesamtbanksteuerung und deckt die Themen Markt- und Vertriebs-

steuerung, Bilanzstrukturmanagement, Risikocontrolling, Treasury,

Adressrisikosteuerung, Basel II und IAS / IFRS ab. THINC unter-

stützt Sie bei der Erfüllung der Anforderungen aus den MaRisk.
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