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A new approach to optimizing or hedging a portfolio of �nancial instruments to reduce risk is

presented and tested on applications. It focuses on minimizing Conditional Value-at-Risk (CVaR)

rather than minimizing Value-at-Risk (VaR), but portfolios with low CVaR necessarily have low

VaR as well. CVaR, also called Mean Excess Loss, Mean Shortfall, or Tail VaR, is anyway

considered to be a more consistent measure of risk than VaR.

Central to the new approach is a technique for portfolio optimization which calculates VaR

and optimizes CVaR simultaneously. This technique is suitable for use by investment companies,

brokerage �rms, mutual funds, and any business that evaluates risks. It can be combined with

analytical or scenario-based methods to optimize portfolios with large numbers of instruments, in

which case the calculations often come down to linear programming or nonsmooth programming.

The methodology can be applied also to the optimization of percentiles in contexts outside of

�nance.
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1 INTRODUCTION

This paper introduces a new approach to optimizing a portfolio so as to reduce the risk of high

losses. Value-at-Risk (VaR) has a role in the approach, but the emphasis is on Conditional

Value-at-Risk (CVaR), which is known also as Mean Excess Loss, Mean Shortfall, or Tail VaR.

By de�nition with respect to a speci�ed probability level �, the �-VaR of a portfolio is the

lowest amount � such that, with probability �, the loss will not exceed �, whereas the �-CVaR

is the conditional expectation of losses above that amount �. Three values of � are commonly

considered: 0.90, 0.95 and 0.99. The de�nitions ensure that the �-VaR is never more than the

�-CVaR, so portfolios with low CVaR must have low VaR as well.

A description of various methodologies for the modeling of VaR can be seen, along with re-

lated resources, at URL http://www.gloriamundi.org/. Mostly, approaches to calculating VaR

rely on linear approximation of the portfolio risks and assume a joint normal (or log-normal) dis-

tribution of the underlying market parameters, see, for instance, Du�e and Pan (1997), Jorion

(1996), Pritsker (1997), RiskMetrics (1996), Simons (1996), Beder (1995), Stambaugh (1996).

Also, historical or Monte Carlo simulation-based tools are used when the portfolio contains non-

linear instruments such as options (Bucay and Rosen (1999), Jorion (1996), Mauser and Rosen

(1999), Pritsker (1997), RiskMetrics (1996), Beder (1995), Stambaugh (1996)). Discussions of

optimization problems involving VaR can be found in papers by Litterman (1997a,1997b), Kast

et al. (1998), Lucas and Klaassen (1998).

Although VaR is a very popular measure of risk, it has undesirable mathematical charac-

teristics such as a lack of subadditivity and convexity, see Artzner et al. (1997,1999). VaR is

coherent only when it is based on the standard deviation of normal distributions (for a normal

distribution VaR is proportional to the standard deviation). For example, VaR associated with a

combination of two portfolios can be deemed greater than the sum of the risks of the individual

portfolios. Furthermore, VaR is di�cult to optimize when it is calculated from scenarios. Mauser

and Rosen (1999), McKay and Keefer (1996) showed that VaR can be ill-behaved as a function

of portfolio positions and can exhibit multiple local extrema, which can be a major handicap

in trying to determine an optimal mix of positions or even the VaR of a particular mix. As an

alternative measure of risk, CVaR is known to have better properties than VaR, see Artzner et al.

(1997), Embrechts (1999). Recently, P
ug (2000) proved that CVaR is a coherent risk measure

having the following properties: transition-equivariant, positively homogeneous, convex, mono-

tonic w.r.t. stochastic dominance of order 1, and monotonic w.r.t. monotonic dominance of order
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2. A simple description of the approach for minimization of CVaR and optimization problems

with CVaR constraints can be found in the review paper by Uryasev (2000). Although CVaR

has not become a standard in the �nance industry, CVaR is gaining in the insurance industry,

see Embrechts et al. (1997). Bucay and Rosen (1999) used CVaR in credit risk evaluations. A

case study on application of the CVaR methodology to the credit risk is described by Andersson

and Uryasev (1999). Similar measures as CVaR have been earlier introduced in the stochastic

programming literature, although not in �nancial mathematics context. The conditional expec-

tation constraints and integrated chance constraints described by Prekopa (1995) may serve the

same purpose as CVaR.

Minimizing CVaR of a portfolio is closely related to minimizing VaR, as already observed from

the de�nition of these measures. The basic contribution of this paper is a practical technique of

optimizing CVaR and calculating VaR at the same time. It a�ords a convenient way of evaluating

� linear and nonlinear derivatives (options, futures);

�market, credit, and operational risks;

� circumstances in any corporation that is exposed to �nancial risks.

It can be used for such purposes by investment companies, brokerage �rms, mutual funds, and

elsewhere.

In the optimization of portfolios, the new approach leads to solving a stochastic optimization

problem. Many numerical algorithms are available for that, see for instance, Birge and Louveaux

(1997), Ermoliev andWets (1988), Kall andWallace (1995), Kan and Kibzun (1996), P
ug (1996),

Prekopa (1995). These algorithms are able to make use of special mathematical features in the

portfolio and can readily be combined with analytical or simulation-based methods. In cases

where the uncertainty is modeled by scenarios and a �nite family of scenarios is selected as an

approximation, the problem to be solved can even reduce to linear programming. On applications

of the stochastic programming in �nance area, see, for instance, Zenios (1996), Ziemba and Mulvey

(1998).

2 DESCRIPTION OF THE APPROACH

Let f(x;y) be the loss associated with the decision vector x, to be chosen from a certain subset

X of IRn, and the random vector y in IRm. (We use boldface type for vectors to distinguish them

from scalars.) The vector x can be interpreted as representing a portfolio, with X as the set of
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available portfolios (subject to various constraints), but other interpretations could be made as

well. The vector y stands for the uncertainties, e.g. in market parameters, that can a�ect the

loss. Of course the loss might be negative and thus, in e�ect, constitute a gain.

For each x, the loss f(x;y) is a random variable having a distribution in IR induced by that

of y. The underlying probability distribution of y in IRm will be assumed for convenience to have

density, which we denote by p(y). However, as it will be shown later, an analytical expression p(y)

for the implementation of the approach is not needed. It is enough to have an algorithm (code)

which generates random samples from p(y). A two step procedure can be used to derive analytical

expression for p(y) or construct a Monte Carlo simulation code for drawing samples from p(y)

(see, for instance, RiskMetrics (1996)): (1) modeling of risk factors in IRm1 ,(with m1 < m), (2)

based on the characteristics of instrument i, i =; : : : ; n, the distribution p(y) can be derived or

code transforming random samples of risk factors to the random samples from density p(y) can

constructed.

The probability of f(x;y) not exceeding a threshold � is given then by

	(x; �) =

Z
f(x;y)��

p(y) dy: (1)

As a function of � for �xed x, 	(x; �) is the cumulative distribution function for the loss associated

with x. It completely determines the behavior of this random variable and is fundamental in

de�ning VaR and CVaR. In general, 	(x; �) is nondecreasing with respect to � and continuous

from the right, but not necessarily from the left because of the possibility of jumps. We assume

however in what follows that the probability distributions are such that no jumps occur, or in

other words, that 	(x; �) is everywhere continuous with respect to �. This assumption, like

the previous one about density in y, is made for simplicity. Without it there are mathematical

complications, even in the de�nition of CVaR, which would need more explanation. We prefer

to leave such technical issues for a subsequent paper. In some common situations, the required

continuity follows from properties of loss f(x;y) and the density p(y); see Uryasev (1995).

The �-VaR and �-CVaR values for the loss random variable associated with x and any speci�ed

probability level � in (0; 1) will be denoted by ��(x) and ��(x). In our setting they are given by

��(x) = minf� 2 IR : 	(x; �) � � g (2)

and

��(x) = (1� �)�1
Z
f(x;y)���(x)

f(x;y) p(y) dy: (3)
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In the �rst formula, ��(x) comes out as the left endpoint of the nonempty interval consisting of

the values � such that actually 	(x; �) = �. (This follows from 	(x; �) being continuous and

nondecreasing with respect to �. The interval might contain more than a single point if 	 has

\
at spots.") In the second formula, the probability that f(x;y) � ��(x) is therefore equal to

1��. Thus, ��(x) comes out as the conditional expectation of the loss associated with x relative

to that loss being ��(x) or greater.

The key to our approach is a characterization of ��(x) and ��(x) in terms of the function F�

on X � IR that we now de�ne by

F�(x; �) = �+ (1� �)�1
Z
y2IRm

[f(x;y) � �]+ p(y) dy; (4)

where [t]+ = t when t > 0 but [t]+ = 0 when t � 0. The crucial features of F� , under the

assumptions made above, are as follows. For background on convexity, which is a key property

in optimization that in particular eliminates the possibility of a local minimum being di�erent

from a global minimum, see Rockafellar (1970), Shor (1985), for instance.

Theorem 1. As a function of �, F�(x; �) is convex and continuously di�erentiable. The �-CVaR

of the loss associated with any x 2 X can be determined from the formula

��(x) = min
�2IR

F�(x; �): (5)

In this formula the set consisting of the values of � for which the minimum is attained, namely

A�(x) = argmin
�2IR

F�(x; �); (6)

is a nonempty, closed, bounded interval (perhaps reducing to a single point), and the �-VaR of

the loss is given by

��(x) = left endpoint of A�(x). (7)

In particular, one always has

��(x) 2 argmin
�2IR

F�(x; �) and ��(x) = F�(x; ��(x)): (8)

Theorem 1 will be proved in the Appendix. Note that for computational purposes one could

just as well minimize (1��)F�(x; �) as minimize F�(x; �). This would avoid dividing the integral

by 1� � and might be better numerically when 1� � is small.

The power of the formulas in Theorem 1 is apparent because continuously di�erentiable convex

functions are especially easy to minimize numerically. Also revealed is the fact that �-CVaR can
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be calculated without �rst having to calculate the �-VaR on which its de�nition depends, which

would be more complicated. The �-VaR may be obtained instead as a byproduct, but the extra

e�ort that this might entail (in determining the interval A�(x) and extracting its left endpoint,

if it contains more than one point) can be omitted if �-VaR isn't needed.

Furthermore, the integral in the de�nition (4) of F�(x; �) can be approximated in various

ways. For example, this can be done by sampling the probability distribution of y according

to its density p(y). If the sampling generates a collection of vectors y1;y2; : : : ;yq, then the

corresponding approximation to F�(x; �) is

~F�(x; �) = �+
1

q(1� �)

qX
k=1

[f(x;yk)� �]+: (9)

The expression ~F�(x; �) is convex and piecewise linear with respect to �. Although it is not

di�erentiable with respect to �, it can readily be minimized, either by line search techniques or

by representation in terms of an elementary linear programming problem.

Other important advantages of viewing VaR and CVaR through the formulas in Theorem 1

are captured in the next theorem.

Theorem 2. Minimizing the �-CVaR of the loss associated with x over all x 2 X is equivalent

to minimizing F�(x; �) over all (x; �) 2 X � IR, in the sense that

min
x2X

��(x) = min
(x;�)2X�IR

F�(x; �); (10)

where moreover a pair (x�; ��) achieves the second minimum if and only if x� achieves the

�rst minimum and �� 2 A�(x
�). In particular, therefore, in circumstances where the interval

A�(x
�) reduces to a single point (as is typical), the minimization of F (x; �) over (x; �) 2 X � IR

produces a pair (x�; ��), not necessarily unique, such that x� minimizes the �-CVaR and �� gives

the corresponding �-VaR.

Furthermore, F�(x; �) is convex with respect to (x; �), and ��(x) is convex with respect to

x, when f(x;y) is convex with respect to x, in which case, if the constraints are such that X is

a convex set, the joint minimization is an instance of convex programming.

Again, the proof will be furnished in the Appendix. According to Theorem 2, it is not

necessary, for the purpose of determining an x that yields minimum �-CVaR, to work directly

with the function ��(x), which may be hard to do because of the nature of its de�nition in terms of

the �-VaR value ��(x) and the often troublesome mathematical properties of that value. Instead,
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one can operate on the far simpler expression F�(x; �) with its convexity in the variable � and

even, very commonly, with respect to (x; �).

The optimization approach supported by Theorem 2 can be combined with ideas for approx-

imating the integral in the de�nition (4) of F�(x; �) such as have already been mentioned. This

o�ers a rich range of possibilities. Convexity of f(x;y) with respect to x produces convexity of

the approximating expression ~F�(x; �) in (9), for instance.

The minimization of F� over X�IR falls into the category of stochastic optimization, or more

speci�cally stochastic programming, because of presence of an \expectation" in the de�nition of

F�(x; �). At least for the cases involving convexity, there is a vast literature on solving such

problems (Birge and Louveaux (1997), Ermoliev and Wets (1988), Kall and Wallace (1995), Kan

and Kibzun (1996), P
ug (1996), Prekopa (1995)). Theorem 2 opens the door to applying that

to the minimization of �-CVaR.

3 AN APPLICATION TO PORTFOLIO OPTIMIZATION

To illustrate the approach we propose, we consider now the case where the decision vector x

represents a portfolio of �nancial instruments in the sense that x = (x1; : : : ; xn) with xj being

the position in instrument j and

xj � 0 for j = 1; : : : ; n; with
Xn

j=1
xj = 1: (11)

Denoting by yj the return on instrument j, we take the random vector to be y = (y1; : : : ; yn).

The distribution of y constitutes a joint distribution of the various returns and is independent of

x; it has density p(y).

The return on a portfolio x is the sum of the returns on the individual instruments in the

portfolio, scaled by the proportions xj. The loss, being the negative of this, is given therefore by

f(x;y) = �[x1y1 + � � � + xnyn] = �xTy: (12)

As long as p(y) is continuous with respect to y, the cumulative distribution functions for the loss

associated with x will itself be continuous; see Kan and Kibzun (1996), Uryasev (1995).

Although VaR and CVaR usually is de�ned in monetary values, here we de�ne it in percentage

returns. We consider the case when there is one to one correspondence between percentage return

and monetary values (this may not be true for the portfolios with zero net investment). In this

section, we compare the minimum CVaR methodology with the minimum variance approach,

therefore, to be consistent we consider the loss in percentage terms.

7



The performance function on which we focus here in connection with �-VaR and �-CVaR is

F�(x; �) = �+ (1� �)�1
Z
y2IRn

[�xTy � �]+ p(y) dy: (13)

It's important to observe that, in this setting, F�(x; �) is convex as a function of (x; �), not just

�. Often it is also di�erentiable in these variables; see Kan and Kibzun (1996), Uryasev (1995).

Such properties set the stage very attractively for implementation of the kinds of computational

schemes suggested above.

For a closer look, let �(x) and �(x) denote the mean and variance of the loss associated with

portfolio x; in terms of the mean m and variance V of y we have:

�(x) = �xTm and �2(x) = xTVx: (14)

Clearly, �(x) is a linear function of x, whereas �(x) is a quadratic function of x. We impose the

requirement that only portfolios that can be expected to return at least a given amount R will

be admitted. In other words, we introduce the linear constraint

�(x) � �R (15)

and take the feasible set of portfolios to be

X = f set of x satisfying (11) and (15) g: (16)

This set X is convex (in fact \polyhedral," due to linearity in all the constraints). The problem

of minimizing F� over X � IR is therefore one of convex programming, for the reasons laid out in

Theorem 2.

Consider now the kind of approximation of F� obtained by sampling the probability distribu-

tion in y, as in (9). A sample set y1;y2; : : : ;yq yields the approximate function

~F�(x; �) = �+
1

q(1� �)

qX
k=1

[�xTyk � �]+: (17)

The minimization of ~F� over X� IR, in order to get an approximate solution to the minimization

of F� over X � IR, can in fact be reduced to convex programming. In terms of auxiliary real

variables uk for k = 1; : : : ; r, it is equivalent to minimizing the linear expression

�+
1

q(1� �)

qX
k=1

uk
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subject to the linear constraints (11), (15), and

uk � 0 and xTyk + �+ uk � 0 for k = 1; : : : ; r:

Note that the possibility of such reduction to linear programming does not depend on y having

a special distribution, such as a normal distribution; it works for nonnormal distributions just as

well.

The discussion so far has been directed toward minimizing �-CVaR, or in other words the

problem

(P1) minimize ��(x) over x 2 X;

since that is what is accomplished, on the basis of Theorem 2, when F� is minimized over X�IR.

The related problem of �nding a portfolio that minimizes �-VaR (Kast et al. (1998), Mauser and

Rosen (1999)), i.e., that solves the problem

(P2) minimize ��(x) over x 2 X;

is not covered directly. Because ��(x) � ��(x), however, solutions to (P1) should also be good

from the perspective of (P2). According to Theorem 2, the technique of minimizing F�(x; �) over

X � IR to solve (P1) also does determine the �-VaR of the portfolio x� that minimizes �-CVaR.

That is not the same as solving (P2), but anyway it appears that (P1) is a better problem to be

solving for risk management than (P2).

In this framework it is useful also to compare (P1) and (P2) with a very popular problem,

that of minimizing variance (see Markowitz (1952)):

(P3) minimize �2(x) over x 2 X:

An attractive mathematical feature of (P3) problem is that it reduces to quadratic programming,

but like (P2) it has been questioned for its suitability. Many other approaches could of course also

be mentioned. The mean absolute deviation approach in Konno and Yamazaki (1991), the regret

optimization approach in Dembo (1995), Dembo and King (1992), and the minimax approach

described by Young (1998) are notable in connections with the approximation scheme (17) for

CVaR minimization because they also use linear programming algorithms.

These problems can yield, in at least one important case, the same optimal portfolio x�. We

establish this fact next and then put it to use in numerical testing.
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Proposition. Suppose that the loss associated with each x is normally distributed, as holds

when y is normally distributed. If � � 0:5 and the constraint (15) is active at solutions to any

two of the problems (P1), (P2) and (P3), then the solutions to those two problems are the same;

a common portfolio x� is optimal by both criteria.

Proof. Using the MATHEMATICA package analytical capabilities, under the normality as-

sumption, and with � � 0:5, we expressed the �-VaR and �-CVaR in terms of mean and variance

by

��(x) = �(x) + c1(�)�(x) with c1(�) =
p
2 erf�1(2� � 1) (18)

and

��(x) = �(x) + c2(�)�(x) with c2(�) =

�p
2� exp(erf�1(2� � 1))

2
(1� �)

��1
; (19)

where exp(z) denotes the exponential function and erf�1(z) denotes the inverse of the error

function

erf(z) =
2p
�

Z z

0
e�t

2

dt:

When the constraint (15) is active at optimality, the set X can just as well be replaced in the

minimization by the generally smaller set X 0 obtained by substituting the equation �(x) = �R
for the inequality �(x) � �R. For x 2 X 0, however, we have

��(x) = �R+ c1(�)�(x) and ��(x) = �R+ c2(�)�(x);

where the coe�cients c1(�) and c2(�) are positive. Minimizing either of these expressions over

x 2 X 0 is evidently the same as minimizing �(x)2 over x 2 X 0. Thus, if the constraint (15) is

active in two of the problems, then any portfolio x� that minimizes �(x) over x 2 X 0 is optimal

for those two problems. �
This proposition furnishes an opportunity of using quadratic programming solutions to prob-

lem (P3) as a benchmark in testing the method of minimizing �-CVaR by the sampling approxi-

mations in (17) and their reduction to linear programming. We carry this out in for an example

in which an optimal portfolio is to be constructed from three instruments: S&P 500, a portfolio

of long-term U.S. government bonds, and a portfolio of small-cap stocks, the returns on these

instruments being modeled by a (joint) normal distribution. The calculations were conducted by

Carlos Testuri as part of the project in the Stochastic Optimization Course at the University of

Florida.
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The mean m of monthly returns and the covariance matrix V in this example are given

in Table 1 and Table 2, respectively. We took R = 0:011 in the constraint (15) on expected

loss/return.

First, we solved the quadratic programming problem (P3) for these data elements, obtaining

the portfolio x� displayed in Table 3 as the unique optimal portfolio in the Markowitz minimum

variance sense. The corresponding variance was �(x�)2 = 0:00378529 and the mean was �(x�) =

�0:011; thus, the constraint (15) was active in this instance of (P3). Then, for the �-values 0.99,

0.95, and 0.90, we calculated the �-VaR and �-CVaR of this portfolio x� from the formulas in

(18) and (19), obtaining the results in Table 4.

With these values at hand for comparison purposes, we proceeded with our approach, based

on Theorem 2, of solving the �-CVaR problem (P1) by minimizing F�(x; �) over (x; �) 2 X� IR.

To approximate the integral in the expression (13) for F�(x; �), we sampled the return vector

y according to its density p(y) in the (multi)normal distribution N (m;V) in IR3. The samples

produced approximations ~F�(x; �) as in (17). The minimization of ~F�(x; �) over (x; �) 2 X � IR

was converted in each case to a linear programming problem in the manner explained after (17).

These approximate calculations yielded estimates x� for the optimal portfolio in (P1) along with

corresponding estimates �� for their �-VaR and ~F�(x
�; ��) for their �-CVaR.

The linear programming calculations were carried out using the CPLEX linear programming

solver on a 300 MHz Pentium-II machine. In generating the random samples, we worked with two

types of \random" numbers: the pseudo-random sequence of numbers (conventional Monte-Carlo

approach) and the Sobol quasi-random sequence (Press et al. (1992), page 310). For similar

applications of the quasi-random sequences, see Birge (1995), Boyle et al. (1997), Kreinin et al.

(1998). The results for the pseudo-random sequence are shown in Table 5, while those for the

quasi-random sequence are shown in Table 6.

In comparing the results in Table 5 for our Minimum CVaR approach with pseudo-random

sampling to those that correspond to the optimal portfolio under the Minimum Variance approach

in Tables 3 and 4, we see that the CVaR values di�er by only few percentage points, depending

upon the number of samples, and likewise for the VaR values. However, the convergence of the

CVaR estimates in Table 5 to the values in Table 4 (which the Proposition leads us to expect)

is slow at best. This slowness might be attributable to the sampling errors in the Monte-Carlo

simulations. Besides, at optimality the variance, VaR, and CVaR appear to have low sensitivities

to the changes in the portfolio positions.

The results obtained in Table 6 from our Minimum CVaR approach with quasi-random sam-
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Instrument Mean Return

S&P 0.0101110

Gov Bond 0.0043532

Small Cap 0.0137058

Table 1: Portfolio Mean Return

S& P Gov Bond Small Cap

S&P 0.00324625 0.00022983 0.00420395

Gov Bond 0.00022983 0.00049937 0.00019247

Small Cap 0.00420395 0.00019247 0.00764097

Table 2: Portfolio Covariance Matrix

S&P Gov Bond Small Cap

0.452013 0.115573 0.432414

Table 3: Optimal Portfolio with the Minimum Variance Approach

� = 0:90 � = 0:95 � = 0:99

VaR 0.067847 0.090200 0.132128

CVaR 0.096975 0.115908 0.152977

Table 4: VaR and CVaR obtained with the Minimum Variance Approach
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� Smpls S&P Gov Small VaR VaR CVaR CVaR Iter Time

# Bond Cap Dif(%) Dif(%) (min)

0.9 1000 0.35250 0.15382 0.49368 0.06795 0.154 0.09962 2.73 1157 0.0

0.9 3000 0.55726 0.07512 0.36762 0.06537 3.645 0.09511 -1.92 636 0.0

0.9 5000 0.42914 0.12436 0.44649 0.06662 1.809 0.09824 1.30 860 0.1

0.9 10000 0.48215 0.10399 0.41386 0.06622 2.398 0.09503 -2.00 2290 0.3

0.9 20000 0.45951 0.11269 0.42780 0.06629 -2.299 0.09602 -0.98 8704 1.5

0.95 1000 0.53717 0.08284 0.37999 0.09224 2.259 0.11516 -0.64 156 0.0

0.95 3000 0.54875 0.07839 0.37286 0.09428 4.524 0.11888 2.56 652 0.0

0.95 5000 0.57986 0.06643 0.35371 0.09175 1.715 0.11659 0.59 388 0.1

0.95 10000 0.47102 0.10827 0.42072 0.08927 -1.03 0.11467 -1.00 1451 0.2

0.95 20000 0.49038 0.10082 0.40879 0.09136 1.284 0.11719 1.11 2643 0.7

0.99 1000 0.41844 0.12848 0.45308 0.13454 1.829 0.14513 -5.12 340 0.0

0.99 3000 0.6196 0.05116 0.32924 0.12791 -3.187 0.14855 -2.89 1058 0.0

0.99 5000 0.63926 0.04360 0.31714 0.13176 -0.278 0.15122 -1.14 909 0.1

0.99 10000 0.45203 0.11556 0.43240 0.12881 -2.51 0.14791 -3.31 680 0.1

0.99 20000 0.45766 0.11340 0.42894 0.13153 -0.451 0.15334 0.24 3083 0.9

Table 5: Portfolio, VaR, and CVaR from Min CVaR Approach: Monte Carlo Sim-

ulations Generated by Pseudo-Random Numbers (� value, sample size, three portfolio

positions, calculated VaR, deviation from Min Variance VaR, calculated CVaR, deviation from

Min Variance CVaR, number of CPLEX iterations, processor time on 300 MHz Pentium II)
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� Smpls S&P Gov Small VaR VaR CVaR CVaR Iter Time

# Bond Cap Dif(%) Dif(%) (min)

0.9 1000 0.43709 0.12131 0.44160 0.06914 1.90 0.09531 -1.71 429 0.0

0.9 3000 0.45425 0.11471 0.43104 0.06762 -0.34 0.09658 -0.41 523 0.0

0.9 5000 0.44698 0.11751 0.43551 0.06784 -0.02 0.09664 -0.35 837 0.1

0.9 10000 0.45461 0.11457 0.43081 0.06806 0.32 0.09695 -0.02 1900 0.3

0.9 20000 0.46076 0.11221 0.42703 0.06790 0.08 0.09692 -0.06 4818 0.6

0.95 1000 0.43881 0.12065 0.44054 0.09001 -0.21 0.11249 -2.95 978 0.0

0.95 3000 0.43881 0.12065 0.44054 0.09001 -0.21 0.11511 -0.69 407 0.0

0.95 5000 0.46084 0.11218 0.42698 0.09036 0.18 0.11516 -0.64 570 0.1

0.95 10000 0.45723 0.11357 0.42920 0.09016 -0.05 0.11577 -0.12 1345 0.2

0.95 20000 0.45489 0.11447 0.43064 0.09023 0.03 0.11577 -0.12 1851 0.7

0.99 1000 0.52255 0.08846 0.38899 0.12490 -5.47 0.14048 -8.17 998 0.0

0.99 3000 0.43030 0.12392 0.44578 0.12801 -3.12 0.15085 -1.39 419 0.0

0.99 5000 0.45462 0.11457 0.43081 0.13073 -1.06 0.14999 -1.95 676 0.1

0.99 10000 0.39156 0.13881 0.46963 0.13288 0.57 0.15208 -0.59 1065 0.2

0.99 20000 0.46065 0.11225 0.42710 0.13198 -0.11 0.15211 -0.57 1317 0.5

Table 6: The Portfolio, VaR, and CVaR from Min CVaR Approach: Simulations

Generated by Quasi-Random Sobel Sequences (� value, sample size, three portfolio posi-

tions, calculated VaR, deviation from Min Variance VaR, calculated CVaR, deviation from Min

Variance CVaR, number of CPLEX iterations, processor time on 300 MHz Pentium-II)
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pling exhibit di�erent and better behavior. There is relatively fast convergence to the values for

the Minimum Variance problem. When the sample size is above 10000, the di�erences in CVaR

and VaR obtained with the Minimum CVaR and the Minimum Variance approaches are less than

1%.

4 AN APPLICATION TO HEDGING

As a further illustration of our approach, we consider next an example where a NIKKEI portfolio

is hedged. This problem, out of Mauser and Rosen (1999), was provided to us by the research

group of Algorithmics Inc. Mauser and Rosen (1999) considered two ways of hedging: parametric

and simulation VaR techniques. In each case, the best hedge is calculated by one-instrument

minimization of VaR, i.e., by keeping all but one of the positions in the portfolio �xed and varying

that one, within a speci�ed range, until the VaR of the portfolio appears to be as low as possible.

Here, we show �rst that when the same procedure is followed but in terms of minimizing CVaR,

the one-instrument hedges obtained are very close to the ones obtained in terms of minimizing

VaR. We go on show, however, that CVaR minimization has the advantage of being practical

beyond the one-instrument setting. Positions of several, or even many, instruments may be

adjusted simultaneously in a broader mode of hedging.

As in the application to portfolio optimization in the preceding section, the calculations could

be reduced to linear programming by the kind of maneuver described after (16), which adds

an extra variable for each scenario that is introduced. This would likely be advantageous for

hedges involving the simultaneous adjustment of positions in a large number of instruments (say

> 1000). But we demonstrate here that for hedges with relatively few instruments being adjusted,

nonsmooth optimization techniques can compete with linear programming. In such techniques

there is no need to add extra variables, and the dimension of the problem stays the same regardless

of how many scenarios are considered.

Table 7 shows a portfolio that implements a butter
y spread on the NIKKEI index, as of July

1, 1997. In addition to common shares of Komatsu and Mitsubishi, the portfolio includes several

European call and put options on these equities. This portfolio makes extensive use of options to

achieve the desired payo� pro�le. Figure 1 (reproduced from Mauser and Rosen (1999)) shows

the distribution of one-day losses over a set of 1,000 Monte Carlo scenarios. It indicates that

the normal distribution �ts the data poorly. Therefore, Minimum CVaR and Minimum Variance

approaches could, for this case, lead to quite di�erent optimal solutions.
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Instrument Type Day to Strike Price Position Value

Maturity (103 JPY) (103) (103 JPY)

Mitsubishi EC 6mo 860 Call 184 860 11.5 563,340

Mitsubishi Corp Equity n/a n/a 2.0 1,720,00

Mitsubishi Cjul29 800 Call 7 800 -16.0 -967,280

Mitsubishi Csep30 836 Call 70 836 8.0 382,070

Mitsubishi Psep30 800 Put 70 800 40.0 2,418,012

Komatsu Ltd Equity n/a n/a 2.5 2,100,000

Komatsu Cjul29 900 Call 7 900 -28.0 -11,593

Komatsu Cjun2 670 Call 316 670 22.5 5,150,461

Komatsu Cjun2 760 Call 316 760 7.5 1,020,110

Komatsu Paug31 760 Put 40 760 -10.0 -68,919

Komatsu Paug31 830 Put 40 830 10.0 187,167

Table 7: NIKKEI Portfolio, reproduced from Mauser and Rosen (1999).

For the 11 instruments in question, let x be the vector of positions in the portfolio to be

determined, in contrast to z, the vector of initial positions in Table 7 (the �fth column). These

vectors belong to IR11. In the hedging, we were only concerned, of course, with varying some

of the positions in x away from those in z, but we wanted to test out di�erent combinations.

This can be thought of in terms of selecting an index set J within f1; 2; : : : ; 11g to indicate the

instruments that are open to adjustment. In the case of one-instrument hedging, for instance,

we took J to specify a single instrument but consecutively went through di�erent choices of that

instrument.

Having selected a particular J , for the case when J contains more than one index, we imposed,

on the coordinates xj of x, the constraints

�jzj j � xj � jzj j for j 2 J; (20)

but on the other hand

xj = zj for j =2 J; (21)

thus taking

X = f set of x satisfying (20) and (21) g: (22)
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Figure 1: Distribution of losses for the NIKKEI portfolio with best normal approximation,

(1,000 scenarios), reproduced from Mauser and Rosen (1999).

The constraints (21) could be used of course to eliminate the variables xj for j =2 J from the

problem, which we did in practice, but this formulation simpli�es the notation and facilitates

comparisons between di�erent choices of J . The absolute values appear in (20) because short

positions are represented by negative numbers.

Let m be the vector of initial prices (per unit) of the instruments in question and let y be

the random vector of prices one day later. The loss to be dealt with in this context is the initial

value of the entire portfolio minus its value one day later, namely

f(x; y) = xTm� xTy = xT (m� y): (23)

The corresponding function in our CVaR minimization approach is therefore

F�(x; �) = �+ (1� �)�1
Z
y2IR11

[xT (m� y)� �]+ p(y) dy: (24)

The problem to be solved, in accordance with Theorem 2, is that of minimizing F�(x; �) over

X � IR. This is the minimization of a convex function over a convex set.

To approximate the integral we generated sample points y1;y2; : : : ;yq and accordingly re-

placed F�(x; �) by

~F�(x; �) = �+
1

q(1� �)

qX
k=1

[xT (m� yk)� �]+; (25)
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an expression that is again convex in (x; �), moreover piecewise linear. Passing thereby to the

minimization of ~F�(x; �) over X � IR, we could have converted the calculations to linear pro-

gramming, but instead, as already explained, took the route of nonsmooth optimization. This

involved working with the subgradient (or generalized gradient) set associated with ~F� at (x; �),

which consists of all vectors in IR11 � IR of the form

(0; 1) +
1

q(1� �)

qX
k=1

�k(m� yk;�1) with

8>><
>>:

�k = 1 if xT (m� yk)� � > 0,

�k 2 [0; 1] if xT (m� yk)� � = 0,

�k = 0 if xT (m� yk)� � < 0.

(26)

We used the Variable Metric Algorithm developed for nonsmooth optimization problems in Urya-

sev (1991), taking � = 0:95, which made the initial �-VaR and �-CVaR values of the portfolio

be 657,816 and 2,022,060.

The results for the one-instrument hedging tests, where we followed our approach to minimize

�-CVaR with J = f1g, then with J = f2g, and so forth, are presented in Table 8. The optimal

hedges we obtained are close to the ones that were obtained in Mauser and Rosen (1999) by

minimizing �-VaR. Because J was comprised of a single index, x was just one-dimensional in

these tests; minimization with respect to (x; �) was therefore two-dimensional. The algorithm

needed less than 100 iterations to �nd 6 correct digits in the performance function and variables.

For testing purposes, we employed the MATHEMATICA version of the variable metric code on

a Pentium II, 450MHz machine. (The FORTRAN and MATHEMATICA versions of the code are

available at http://www.ise.u
.edu/uryasev). The constraints were accounted for by nonsmooth

penalty functions. Each run took less than one minute of computer time. The calculation time

could be signi�cantly improved using the algorithm implemented with FORTRAN or C, however

such computational studies were beyond the scope of this paper.

After �nishing with the one-instrument tests, we tried hedging with respect the last 4 of the 11

instruments, simultaneously. The optimal hedge we determined in this way is indicated in Table

9. The optimization did not change the positions of Komatsu Cjun2 670 and Komatsu Paug31

760, but the positions of Komatsu Cjun2 760 and Komatsu Paug31 830 changed not only in

magnitude but in sign. In comparison with one-instrument hedging, we observe that the multiple

instrument hedging considerably improved the VaR and CVaR. In this case, the �nal �-VaR

equals -1,400,000 and the �nal �-CVaR equals 37,334.6, which is lower than best one-dimension

hedge with �-VaR=-1,200,000 and �-CVaR=363,556 (see line 9 in Table 8). Six correct digits in

the performance function and the positions were obtained after 400{800 iterations of the variable

metric algorithm in Uryasev (1991), depending upon the initial parameters. It took about 4{8
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minutes with MATHEMATICA version of the variable metric code on a Pentium II, 450MHz.

In contrast to the application in the preceding section, where we used linear programming

techniques, the dimension of the nonsmooth optimization problem does not change with increase

in the number of scenarios. This may give some computational advantages for problems with a

very large number of scenarios.

This example clearly shows, by the way, the superiority of CVaR over VaR in capturing risk.

Portfolios are displayed that have positive �-CVaR but negative �-VaR for the same level of

� = 0:95. The portfolio corresponding to the �rst line of Table 8, for instance, has �-VaR equal

to -205,927 but �-CVaR equal to 1,183,040. A negative loss is of course a gain 1. The portfolio

in question will thus result with probability 0.95 in a gain of 205,927 or more. That �gure does

not reveal, however, how serious the outcome might be the rest of the time. The CVaR �gure

says in fact that, in the cases where the gain of at least 205,927 is not realized, there is, on the

average, a loss of 1,183,040.

5 CONCLUDING REMARKS

The paper considered a new approach for simultaneous calculation of VaR and optimization of

CVaR for a broad class of problems. We showed that CVaR can be e�ciently minimized using

Linear Programming and Nonsmooth Optimization techniques. Although, formally, the method

minimizes only CVaR, our numerical experiments indicate that it also lowers VaR because CVaR

� VaR.

We demonstrated with two examples that the approach provides valid results. These examples

have relatively low dimensions and are o�ered here for illustrative purposes. Numerical exper-

iments have been conducted for larger problems, but those results will be presented elsewhere

in a comparison of numerical aspects of various Linear Programming techniques for portfolio

optimization.

There is room for much improvement and re�nement of the suggested approach. For instance,

the assumption that there is a joint density of instrument returns can be relaxed. Furthermore,

extensions can be made to optimization problems with Value-at-Risk constraints. Linear Pro-

gramming and Nonsmooth Optimization algorithms that utilize the special structure of the Min-

imum CVaR approach can be developed. Additional research needs to be conducted on various

1VaR may be negative because it is de�ned relative to zero, but not relative to the mean as in VaR based on

the standard deviation.
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Instrument Best Hedge VaR CVaR

Mitsubishi EC 6mo 860 7,337.53 -205,927 1,183,040

Mitsubishi Corp -926.073 -1,180,000 551,892

Mitsubishi Cjul29 800 -18,978.6 -1,170,000 553,696

Mitsubishi Csep30 836 4381.22 -1,150,000 549,022

Mitsubishi Psep30 800 43,637.1 -1,150,000 542,168

Komatsu Ltd -196.167 -1,180,000 551,892

Komatsu Cjul29 900 -124,939 -1,200,000 593,078

Komatsu Cjun2 670 19,964.9 -1,220,000 385,698

Komatsu Cjun2 760 4,745.20 -1,200,000 363,556

Komatsu Paug31 760 3,1426.3 -1,120,000 538,662

Komatsu Paug31 830 19,356.3 -1,150,000 536,500

Table 8: Best Hedge, Corresponding VaR and CVaR with Minimum CVaR Approach:

One-Instrument Hedges (� = 0:95).

Instrument Position in Portfolio Best Hedge

Komatsu Cjun2 670 22,500 22,500

Komatsu Cjun2 760 7,500 -527

Komatsu Paug31 760 -10,000 -10,000

Komatsu Paug31 830 10,000 -10,000

Table 9: Initial Positions and Best Hedge with Minimum CVaR Approach: Simul-

taneous Optimization with respect to Four Instruments (� = 0:95; VaR of best hedge

equals -1,400,000, whereas CVaR Equals 37334.6.
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theoretical and numerical aspects of the methodology.
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Appendix

Central to establishing Theorems 1 and 2 is the following fact about the behavior with respect

to � of the integral expression in the de�nition (4) of F�(x; �). We rely here on our assumption

that 	(x; �) is continuous with respect to �, which is equivalent to knowing that, regardless of

the choice of x, the set of y with f(x;y) = � has probability zero, i.e.,

Z
f(x;y)=�

p(y) dy = 0: (27)

Lemma. With x �xed, let G(�) =
R
y2IRm g(�;y)p(y)dy, where g(�;y) = [f(x;y) � �]+. Then

G is a convex, continuously di�erentiable function with derivative

G0(�) = 	(x; �) � 1: (28)

Proof. This lemma follows from Proposition 2.1 in Shapiro and Wardi (1994).

Proof of Theorem 1. In view of the de�ning formula for F�(x; �) in (4), it is immediate from

the Lemma that F�(x; �) is convex and continuously di�erentiable with derivative

@

@�
F�(x; �) = 1 + (1� �)�1[	(x; �) � 1] = (1� �)�1[	(x; �)� �]: (30)

Therefore, the values of � that furnish the minimum of F�(x; �), i.e., the ones comprising the

set A�(x) in (6), are precisely those for which 	(x; �) � � = 0. They form a nonempty closed

interval, inasmuch as 	(x; �) is continuous and nondecreasing in � with limit 1 as � ! 1 and

limit 0 as � ! �1. This further yields the validity of the �-VaR formula in (7). In particular,

then, we have

min
�2IR

F�(x; �) = F�(x; ��(x)) = ��(x) + (1� �)�1
Z
y2IRm

[f(x;y)� ��(x)]
+ p(y) dy:

But the integral here equals

Z
f(x;y)���(x)

[f(x;y)� ��(x)]p(y)dy =

Z
f(x;y)���(x)

f(x;y)p(y)dy � ��(x)

Z
f(x;y)���(x)

p(y)dy;

where the �rst integral on the right is by de�nition (1��)��(x) and the second is 1�	(x; ��(x))

by virtue of (27). Moreover 	(x; ��(x)) = �. Thus,

min
�2IR

F�(x; �) = ��(x) + (1� �)�1[(1� �)��(x)� ��(x)(1 � �)] = ��(x):

This con�rms for �-CVaR formula in (5) and �nishes the proof of Theorem 1. �
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Proof of Theorem 2. The initial claims, surrounding (10), are elementary consequences of the

formula for ��(x) in Theorem 1 and the fact that the minimization of F�(x; �) with respect to

(x; �) 2 X�IR can be carried out by �rst minimizing over � 2 IR for �xed x and then minimizing

the result over x 2 X.

Justi�cation of the convexity claim starts with the observation that F�(x; �) is convex with

respect to (x; �) whenever the integrand [f(x;y) � �]+ in the formula (4) for F�(x; �) is itself

convex with respect to (x; �). For each y, this integrand is the composition of the function

(x; �) 7! f(x;y)�� with the nondecreasing convex function t 7! [t]+, so by the rules in Rockafellar

(1970) (Theorem 5.1) it is convex as long as the function (x; �) 7! f(x;y) � � is convex. The

latter is true when f(x;y) is convex with respect to x. The convexity of the function ��(x)

follows from the fact that minimizing of an extended-real-valued convex function of two vector

variables (with in�nity representing constraints) with respect to one of these variables, results in

a convex function of the remaining variable (Rockafellar (1970), pp. 38-39). �
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