
This paper introduces a new statistical approach to assessing the quality of risk
measures: quality control of risk measures (QCRM). The approach is applied
to the problem of backtesting value-at-risk (VAR) models. VAR models are
used to predict the maximum likely losses in a bank’s portfolio at a specified
confidence level and time horizon. The widely accepted VAR backtesting
procedure outlined by the Basel Committee for Banking Supervision controls
the probability of rejecting the model when the model is correct. A drawback
of the Basel approach is its limited power to control the probability of accept-
ing an incorrect VAR model. By exploiting the binomial structure of the testing
problem, QCRM provides a more balanced testing procedure, which results in
a uniform reduction of the probability of accepting a wrong model.

QCRM consists of three elements: the first is a new hypothesis-testing
problem in which the null and alternative hypotheses are exchanged to control
the probability of accepting an inaccurate model. The second element is a new
approach for comparing the power of the QCRM and Basel tests in terms of the
probability of rejecting correct and incorrect models. The third element involves
the use of the technique of pivoting the cumulative distribution function to
obtain one-sided confidence intervals for the probability of an exception.

The use of these confidence intervals results in new acceptance/rejection
regions for tests of the VAR model. We compare these to ones commonly used
in the financial literature.

1 Introduction

Banking regulators and risk managers of financial institutions often wish to
assess the adequacy of a model. They frequently test the null hypothesis that the
model is correct against an alternative hypothesis that the model is incorrect.
In this paper we present an approach to assist regulators and risk managers in this
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task. We illustrate the approach by presenting an application to the problem of
backtesting value-at-risk (VAR) models.

The (1 – δ)100% VAR number is the (1 – δ) × 100 percentile of the distribu-
tion of the portfolio losses for a specified time horizon. VAR backtesting is the
process by which financial institutions periodically compare daily profits and
losses with the model-generated risk measures to gauge the accuracy of their
VAR models.

In 1996 the Basel Committee for Banking Supervision (“Basel”) developed a
framework for backtesting the internal models used to calculate regulatory capi-
tal for market risk (see Basel (1996)). Alternative statistical evaluation method-
ologies have been proposed. For example, the evaluation based on the binomial
distribution is discussed by Kupiec (1995); the interval forecast method proposed
by Christoffersen (1998); the distribution forecast method by Crnkovic and
Drachman (1996); and the magnitude loss function method by Lopez (1996). 

We start with the following question:

❏ What are regulators and bank managers really doing when they apply the
Basel VAR backtesting methodology?

The Basel backtesting procedure tests the null hypothesis that the bank’s VAR
model predicts losses accurately against the alternative hypothesis that the model
predicts losses incorrectly:

(1)H0
B : VAR model is correct vs.  H1

B : VAR model is incorrect

The test statistic used is based on the number of exceptions generated by the VAR
model. For a given trading day, an exception occurs when the loss exceeds the
model-based VAR. 

The test postulates that the probability of an exception, p, is equal to 0.01 and
tests it against the alternative hypothesis that the probability of an exception is
greater than 0.01. The test is based on the number of exceptions in 250 trading
days. The test rejects the VAR model if the number of exceptions is greater than
or equal to 10 and accepts the model otherwise. 

When evaluating statistical tests, it is common practice to examine their type I
and II error rates. Under the Basel backtesting procedure, the type I error rate is
the probability of rejecting the VAR model when the model is correct, while the
type II error rate is the probability of accepting the model when the model is
incorrect.

The Basel backtesting procedure is designed for controlling the α level, the
probability of rejecting the VAR model when the model is correct. For this test,
the α level is the probability that number of exceptions, out of 250 daily obser-
vations, is greater than or equal to 10, when the probability of an exception is p =
0.01. The α level of the test is 0.0003 (or 0.03%).

Although the test establishes a very conservative threshold for controlling the
type I error rate, it is not designed to control the type II error rate. Therefore,
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it does not control the probability of accepting the VAR model when the model is
incorrect. 

This drawback is pointed out on page 5 of Basel (1996): “The Committee of
course recognizes that tests of this type are limited in their power to distinguish
an accurate model from an inaccurate model”.

To address this issue we introduce an alternative approach to the Basel back-
testing procedure. We call this methodology quality control of risk measures
(QCRM). Its goal is to enhance the ability of the test to reject an incorrect model.
It consists of three elements: first, the test introduces a new hypothesis testing
problem in which the null and alternative hypotheses are exchanged. The goal
is to control the probability of accepting a wrong model. The second element
consists of a new definition of the power of the tests that allows the comparison
of QCRM and Basel backtesting procedures. The third element involves the use
of a technique to obtain accurate estimates of the acceptance/rejection regions.

The new hypothesis testing problem is:

(2)H0
Q : VAR model is incorrect vs.  H1

Q : VAR model is correct

Under QCRM, the acceptance of the null hypothesis is equivalent to the rejection
of the VAR model. The model is accepted when the null hypothesis in (2) is
rejected and, hence, when there is overwhelming evidence supporting the model. 

A type I error for QCRM occurs when the VAR model is accepted but the
model is incorrect, and a type II error happens when the model is rejected
although the model is correct. Table 1 shows correct and incorrect decisions
when the null and the alternative hypotheses are true. 

The following relationship is important for understanding the properties of the
QCRM test:

Probability of rejecting the VAR model when the model is incorrect

= 1 – Probability of accepting the VAR model when it is incorrect. 

Under QCRM the probability of accepting the VAR model when the model is
incorrect is set at level α: this means that the procedure controls the type 1 error
rate. By setting the α level to a small value (≤1%), QCRM guarantees a high
probability (≥99%) of rejecting a wrong model. Once this level is fixed, the use
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TABLE 1 Type I and II errors for QCRM.

True Decision 1: Decision 2:
hypothesis VAR model is rejected VAR model is accepted

Model correct Type II error Correct assessment
Model incorrect Correct assessment Type I error
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of the Neyman–Pearson lemma provides a uniformly most powerful (UMP) test
that minimizes the type II error (or the probability of rejecting a correct model). 

We introduce an approach for comparing the power of the QCRM and Basel
tests in terms of the probability of rejecting correct and incorrect models. Using
this approach, it is shown that, relative to the Basel procedure, QCRM provides a
balanced trade-off between type I and type II error rates (see Table 3). Table 5
and Figure 1 provide numerical comparisons of the power of the tests. 

Similar to the Basel backtesting procedure, QCRM establishes the accept-
ance/rejection zones based on probabilistic arguments (see (8)). More precisely,
QCRM uses the technique of pivoting the true cumulative distribution function of
the observations to find one-sided confidence intervals, which provides the new
three zones for accepting/rejecting the VAR model. 

The paper is organized as follows: Section 2 reviews the Basel methodology
for testing VAR models. Section 3 introduces the basic idea of QCRM and the
new hypothesis testing problem. Section 3.2 presents the statistical techniques to
compute appropriate coverage confidence intervals for the true (unknown) prob-
ability of an exception, p. The proposed rules for accepting/rejecting the VAR
model are obtained in Section 3.3. The approach for comparing the relative
power of the two tests is then addressed in Section 3.4. Finally, Section 4 sum-
marizes our work. Some technical proofs are presented in Appendices A and B at
the end of the paper.

2 Basel VAR backtesting methodology

The VAR backtesting methodology compares actual losses against model-based
VAR calculations. Let the losses observed in every trading day be denoted by

(3)L1, L2,…, Ln

Let p be the probability of an exception on a given trading day. The computed
(1 – p) × 100% one-day VAR numbers for the corresponding trading days are

(4)V0
1, V1

2,…, V n
n–1,…

where V i
i–1 denotes the VAR calculated for day i using the information available

on day i – 1. Define the indicator random variables

(5)Yi = 1{L ≥Vi–1}, i ≥ 1

such that Yi = 1 if Li ≥V i
i–1 and Yi = 0 otherwise. Hence, an exception occurs on

trading day i if and only if Yi = 1, ie, there is a loss exceeding VAR.
The Basel backtesting procedure assumes that the conditional probability of an

exception at day i, given the information up to day i – 1, is a fixed value, ie,
P(YiIi–1) = p. This implies that the indicator variables Y1, Y2,…, have fixed
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conditional probabilities. In Appendix A we show that the assumption of constant
conditional probability is a necessary and sufficient condition for independence
of the indicator variables Yi,…, Yn. 

The Basel backtesting procedure implicitly tests the following hypothesis:

(6)H0
B : p = p0 vs. HA : p > p0

based on the sample of n = 250 observations Y1,… ,Y250 (where p0 = 0.01). The
Basel procedure uses a p0 value of 1%. This hypothesis is tested against the alter-
native hypothesis that the probability of an exception is greater than p0. 

The Neyman–Pearson lemma provides a uniformly most powerful (UMP) test
with rejection region of the form

R = {# of exceptions ≥ k}

where k is a threshold obtained from the desired probability of the type I error, ie,

(7)P(# of exceptions ≥ kp = p0) = P(RH0) = α

When k = 10, Basel backtesting gives α = 0.003 or 0.3%, which implies that with
a 99.997% probability the VAR model will not be rejected when the model is
correct (ie, p = 0.01). 

Based on the number of exceptions of the VAR model, Basel defines three
zones. The green zone consists of four or fewer exceptions, and in this case the
VAR model is assessed as correct. The yellow zone includes five to nine excep-
tions, and the accuracy of the VAR model is questioned. The red zone corre-
sponds to 10 or more exceptions, and the model is rejected.

The limits for each of the zones can be linked to a probabilistic statement
through the cumulative distribution of the number of the exceptions. The green
zone extends from 0 to 95% of the cumulative probability distribution (cdf) of
the observed exceptions. The yellow zone starts where the cdf of the observed
exceptions exceeds 95% up to 99.97%. The red zone corresponds to values of
probability greater than the 99.99% percentile of the cdf of the observed excep-
tions. For example, using the variables in (3), we compute:

(8)

Note that these probabilities are calculated assuming that the true parameter p is
equal to 0.01.
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3 Quality control of risk measures

3.1 New hypothesis testing problem

QCRM starts with the hypothesis that the VAR model is incorrect and then tests
this against the alternative hypothesis that the VAR model is correct. Accepting
the null hypothesis then implies the rejection of the VAR model, while rejecting
the null hypothesis leads to the acceptance of the model.

Let us assume that the probability of an exception is p0 when the VAR model
is correct and is some unknown value p1 when the model is incorrect. More
specifically, the rival hypotheses are

(9)H0
Q: p > p1 vs. H1

Q: p ≤ p0

where p is the unknown probability of an exception. Note that, using monotonic
properties of tests, the hypothesis test in (9) is equivalent to saying H0

Q : p = p1
vs. H1

Q : p ≤ p0. This results from the fact that the likelihood ratio used in devel-
oping the test is a monotone function of the parameter p (see Equation (8) in
Appendix B).

The test in (9) above can be seen as a quality control problem in which regu-
lators and risk managers assess the quality of the risk model and reject it if the
proportion of exceptions (model failures) is statistically larger than an acceptable
threshold; eg, p0 = 0.01. 

To construct the test, we assume that the observations are independent so that
the number of exceptions

(10)

follows a binomial distribution with parameters n and p. The statistic Sn is also a
sufficient statistic for p, and this means that it contains all the information avail-
able about the parameter p. 

In Appendix B we show that the statistic Sn has a cumulative distribution func-
tion that decreases in the parameter p. Therefore, using the theorem developed by
Karlin-Rubin (see Casella and Berger (2002)), the test that rejects H0

Q : p > p1 vs.
H1

Q : p ≤ p0 if and only if {Sn ≤ s( p1)} is uniformly most powerful level α test,
where α = Pp1

(Sn ≤ s(p1)). Intuitively, the unknown probability p cannot be large
if the number of exceptions is small.

Under the new hypotheses testing problem, QCRM controls the probability of
accepting the VAR model when the model is incorrect. By setting α to a small
level, QCRM safeguards against incorrectly accepting a false model. 

3.2 Optimal confidence intervals for hypothesis testing

In this section we provide the theoretical underpinnings of the QCRM accept-
ance/rejection regions. More specifically, we use the correspondence between

S Y Y Y Xn n i
i

= +…+ = =
=

∑1
1

250
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tests of hypotheses and interval estimation to obtain optimal confidence intervals.
For each sample value Y = (Y1,…, Yn), define the confidence region as follows:

(11)C(Y ) = {p1 : Y ∈ A( p1)}

where A( p1) is the acceptance region for p = p1 against p = p0.
The traditional method for developing a one-sided confidence interval for p

uses the normal approximation for the sample proportion, p̂ = x ⁄n and computes
the lower boundary as

where zα is the (1 – α) × 100% quantile of the standard normal distribution. The
value is used to obtain a right one-sided (1 – α) × 100% confidence interval
(pL(x,α), 1] for p1. 

However, as indicated in Brown, Cai and DasGupta (2001), the intervals have
deficiencies in coverage probability originating from the discreteness of the dis-
tribution, even when n is large, when np is small (as when n = 250 and p = 0.01). 

To overcome this problem, we use a technique in which we pivot the true cdf
of the observations to compute one-sided intervals with a confidence level at least
as large as the desired confidence level (see Casella and Berger (2002)). One
advantage of this technique is that it gives confidence intervals with the desired
confidence level.1

Consider the tail probability of the sample proportion of exceptions, p̂, in a
period of n days. The interval (pL(x,α), 1] is a right one-sided interval of p with
a coverage level greater than or equal to (1 – α) × 100%, where pL(x,α) is the
smallest value of p which satisfies the following:

(12)

As shown below, Equation (12) provides the basis for the development of
QCRM’s acceptance/rejection regions.

3.3 Probabilistic-based rules for accepting/rejecting VAR models

The proposed rules for accepting/rejecting VAR models are computed by invert-
ing the rejection region of the test in (8) with level of significance α (see
Equation (12)). 

When inverting the rejection region, we obtain a right one-sided confidence
interval, (pL(X, α), 1], for p with a coverage level greater than or equal to
(1 – α) × 100%, ie, P(p∈ (pL(X, α), 1]) = 1 – α. Therefore, the test certifies that
the model is correct, with at least (1 – α) × 100% confidence, every time p0
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belongs to the interval (pL(X, α), 1], or alternatively, when p0 does not belong to
(0, pL(X, α)]. 

Note the following property of these one-sided confidence intervals:

(13)(pL(X, α), 1] ⊂ (pL(X, α*), 1] if α* < α

By analogy to the Basel supervisory framework, QCRM defines the following
new zones:

❏ New green zone The VAR model is certified as correct if p0 is in the 95% one-
side confidence interval for p, (pL(X, 0.05), 1].

❏ New yellow zone When p0 is not in the one-sided 95% confidence interval but
is in the 99% one-sided confidence interval for p, (pL(X, 0.01), 1], then the
validity of the model is questioned.

❏ New red zone If p0 is not in the 99% confidence interval for p, (pL(X, 0.01), 1],
then the VAR model is rejected.

We employ a Newton–Raphson algorithm to obtain a solution to Equation (12).
Table 2 presents the 95% and 99% right one-sided confidence intervals for the
probability of an exception after observing k exceptions (0 ≤ k ≤ 10).

Using Table 2 and our criteria for defining the zones, the 99% VAR model is
certified when zero to five exceptions are observed. The model is questioned
when six or seven exceptions are observed. Finally, the model is rejected when
eight or more exceptions are realized.
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TABLE 2 95% and 99% right-sided confidence intervals for the probability of an
exception after observing k exceptions in n = 250 trading days.

Regions 95% 99%

Green
k = 1 [0, 1] [0, 1]
k = 2 (0.000202, 1] (0.000039, 1]
k = 3 (0.0033, 1] (0.0017, 1]
k = 4 (0.0055, 1] (0.0033, 1]
k = 5 (0.0079, 1] (0.0051, 1]

Yellow
k = 6 (0.0105, 1] (0.0072, 1]
k = 7 (0.0132, 1] (0.0094, 1]

Red
k = 8 (0.0160, 1] (0.0117, 1]
k = 9 (0.0189, 1] (0.0142, 1]
k = 10 (0.219, 1] (0.0167, 1]
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Therefore, the proposed three zones using QCRM are:

❏ New green zone = {0 to 5 exceptions}
❏ New yellow zone = {6 or 7 exceptions}
❏ New red zone = {8 or more exceptions}

3.4 A new approach for comparing powers: a tale of two powers

As noted, QCRM controls the probability of accepting the model when the model
is incorrect at a low level α for the test. Therefore, it rejects the null hypothesis
that the model is inaccurate when there is overwhelming evidence supporting the
model (ie, when p ≤ 0.01). This results in the statistical validation of the model. 

To compare the results of the QCRM and Basel procedures, we look at the
relative power of the tests. Since the tests are different in nature (the null and
alternative hypotheses are different), it is not possible to directly compare their
powers. However, by defining the power function of the tests in terms of the
probability of rejecting correct and incorrect models, we are able to make appro-
priate comparisons.

The proposed approach for comparing test powers is based on the probability
of rejecting correct and incorrect models. The first step is to evaluate type I and
type II error rates. Using the results of the tests for 250 observations and a 1%
VAR, the type I and type II error rates are as shown in Table 3.

The next step is to define the power function for QCRM, βQ(p), as:

❏ For p > 0.01, βQ(p) = P(Rejecting the model  Model is incorrect)
= 1 – P(Accepting the model  Model is incorrect)
= 1 – P(X ≤ 7Given p) = P(X ≥ 8Given p), and

❏ For p ≤ 0.01, βQ(p) = P(Rejecting the model  Model is correct)
= P(X ≥ 8Given p).

Likewise, the power function for Basel, βB(p), is:

❏ For p > 0.01, βB(p) = P(Rejecting the model  Model is incorrect)
= 1 – P(Accepting the model  Model is incorrect)
= 1 – P(X ≤ 9Given p) = P(X ≥ 10Given p), and

❏ For p ≤ 0.01, βB(p) = P(Rejecting the model  Model is correct)
= P(X ≥ 10Given p).

Table 5 compares the power of the tests under the new approach. Relative to
Basel, QCRM significantly increases the probability of rejecting a wrong model.
The relative power gain is partially offset by an increase of the probability of
rejecting a correct model.
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The Basel test is very conservative in controlling the probability of rejecting a
correct model (ie, 0.03%); however, it does so at the cost of increasing, relative to
QCRM, the probability of accepting a wrong model. 

On the other hand, the QCRM test provides a balanced trade-off between type
I and type II errors since it uses a less extreme probability of rejecting a correct
model. As a result, QCRM delivers significant gains in power. For example,
Figure 1 shows the percentage gains of QCRM over Basel, calculated as percent-
ages of the respective probabilities of rejecting a wrong model, for values of the
(unknown) probabilities of an exception greater than 0.01. 

Note that QCRM outperforms the Basel test, especially for parameter values
closer to 0.01. For instance, there are rate gains in the range of 637% to 115% for
p values between 0.015 and 0.03, respectively.
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TABLE 5 Powers of Basel and QCRM tests.

Probability of rejecting the model when it is:
Test Correct Incorrect

Basel Less than 0.0003* P(X ≥ 10  Given p > 0.01)
QCRM Less than 0.004 P(X ≥ 8  Given p > 0.01)†

*Assumes a composite null hypothesis for the Basel test with p ≤ 0.01.
† QCRM rejects the VAR model when the number of exceptions is equal to or greater than eight for
alternative values of p greater 0.01. See Section 3.3 for a proof of this.

TABLE 3 Type I and II error rates for the QCRM test.

Decision with QCRM test
True hypothesis Accept H0

Q Reject H0
Q

H0
Q: p > 0.01 OK Type I error = 

P(X ≤ 7p > 0.01)

HA
Q: p ≤ 0.01 Type II error =

P(X ≥ 8p ≤ 0.01) = [0, 0.004] OK

TABLE 4 Type I and II error rates for Basel test.

Basel test decision
True hypothesis Accept H0

B Reject H0
B

H0
B: p = 0.01 OK Type I error = 

P(X ≥ 10p = 0.01) = 0.0003

HA
B: p > 0.01 Type II error = OK

P(X ≤ 9p > 0.01)
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4 Conclusions

In this paper we have developed an approach for validating risk models and applied
it to the problem of validating a value-at-risk model. The main contribution of
our approach is to develop a probabilistic-based test to control the probability of
accepting an incorrect VAR model. As a result, a model is validated when there is
enough evidence to support it.

A second contribution is the introduction of an approach for comparing the
powers of the tests in terms of the probability of rejecting correct and incorrect
models. Using this approach, we have shown that the QCRM procedure delivers
significant gains in power, relative to the Basel procedure, in terms of the proba-
bility of rejecting a wrong model.

The third element is the calculation of improved estimates of the probability of
acceptance/rejection regions. The traditional method for obtaining a one-sided
confidence interval for the parameter p uses the normal approximation for the
sample proportion. However, the intervals have deficiencies in coverage proba-
bility originating from the discreteness of the distribution. We have obtained
confidence intervals with the exact desired confidence level by pivoting the
cumulative distribution function of the number of exceptions.

Our results show that a VAR model should be certified as correct when no
more than five exceptions are observed and should be rejected if eight or more
exceptions are observed in 250 trading days. 

The proposed methodology can be extended to address other model validation
problems within or outside the financial world.
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FIGURE 1 Relative power gain (RPG) curve.
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Appendix A: Independence

In this section we prove the statement that Bernoulli random variables with fixed
conditional probabilities must be independent.

Consider a sequence of Bernoulli random variables X1,…, Xn, P(Xi = 1) = p
and P(Xi = 0) = 1 – p, and assume that for every n there exists a fixed p such that

(A1)P(Xn+1 = xn+1X0 = x0,…, xn) = pxn+1(1 – p)1– xn+1

We now prove by induction that (A1) implies that X1, X2,… are independent
Bernoulli random variables with parameter p. Consider the case n = 0; then (A1)
implies that

P(X0 = x0, X1 = x1) = P(X1 = x1X0 = x0)P(X0 = x0)

= px1(1 – p)1– x1P(X0 = x0)

= P(X0 = x0)P(X1 = x1) (A2)

which implies that X0 and X1 are independent Bernoulli random variables. Let us
assume now that the first n random variables X0,…, Xn are independent Bernoulli
random variables with parameter p; then, using the induction hypothesis and (A1)
gives

P(X0 = x0,…, Xn = xn, Xn+1 = xn+1)

= P(Xn+1 = xn+1X0 = x0,…, Xn = xn) P(X0 = x0,…, Xn = xn )

= pxn+1(1 – p)1– xn+1pxn(1 – p)1– xn … px0(1 – p)1– x0

For the general case, consider a set of indexes i1 < i2 < … < im; then, using the
law of total probabilities,

(A3)

P X x X x P X x X x
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Equation (A3) proves that events Xi1
= xi1

,…, Xim
= xim

are independent. Therefore,
the sequence of Bernoulli random variables X1,…, Xn is independent.

Appendix B: Pivoting a CDF

We provide here a detailed proof of Theorem 9.2.14 of Casella and Berger (2002,
Chapter 9) for computing the confidence intervals.

THEOREM Let X ∈ χ be a discrete statistic with cdf Fx(xθ) = P(X ≤ xθ).
Suppose that for each X ∈ χ, θL(x) and θU(x) are defined as follows:

1. If Fx(xθ) is a decreasing function of θ for each x, define θL(x) and θU(x) by

(B1)

2. If Fx(xθ) is an increasing function of θ for each x, define θL(x) and θU(x) by

(B2)

Then the interval [θL(x), θU(x)] is a 100 × (1 – α)% confidence interval for θ.

PROOF OF (1) Assume first that Fx(xθ) is a decreasing function of θ for each x.
Consider the new random variable T = Fx(xθ) and assume that the range of X is
an ordered set {x0, x1,…}; then the event {T > y} = {Fx(xθ) > y} is equal to the
event {X ≥ xn}, where xn = inf{xi : Fx(xiθ) > y}. Therefore,

(B3)

By definition of xn, P(X ≥ xnθ) = 1 – Fx(xn–1θ) ≥ 1 – y. Therefore,

(B4)P(Fx(Xθ) > y) ≥ 1 – y

If y is between xn–1 and xn, then the inequality in (B4) is strict. This implies that
P (Fx(Xθ) ≤ y) ≤ y. Likewise, we can prove that P (F

–
x(Xθ) ≤ y) ≤ y, where

F
–
x(Xθ) = P (X ≥ xθ). Therefore, the set

(B5)A x F x F xx x( ) : ( )       ( )θ θ
α

θ
α

= ≤ ≤{ }
2 2

and

P F X y P X x

P X x

X i
i n

n

( )θ θ

θ

>( ) = =( )

= ≥( )

=

∞

∑

P X x x P X x xU L≥( ) = ≤( ) =θ
α

θ
α

( ) ,    ( )
2 2

P X x x P X x xU L≤( ) = ≥( ) =θ
α

θ
α

( ) ,    ( )
2 2
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is a rejection region with level of significance α. This implies that (see Casella
and Berger (2002)) the set

(B6)C(x) = {θ : x ∈ A(θ)}

is a 100 × (1 – α)% confidence set for the parameter θ. We consider now θL(x)
and θU(x) that satisfy the equations

(B7)

Note that Fx(xθ) is a decreasing function of θ for each x implies that F
–
x(xθ) is a

non-decreasing function of θ. If θ > θU(x), then Fx(xθ) < α ⁄ 2; and if θ < θL(x),
then F

–
x(xθ) < α ⁄ 2 and

Therefore, the 100 × (1 – α)% confidence set for the parameter θ is C(x) =
[θL(x), θU(x)].

PROOF OF (2) To prove (2) for the increasing case, we consider the function h(θ′)
= Fx(x– θ′), where the parameter – θ′ is moving in the domain of θ. The new
function is a decreasing function of θ′ and we can use the proof given above. ��

In order to apply the former result to the binomial case it is enough to observe
that the cdf of the binomial distribution is a decreasing function of the parameter.
This derives from the fact that X has a monotone likelihood ratio (MLR), ie, for
θ1 < θ2, the likelihood ratio

(B8)

is a decreasing function of x and the following result.

MLR implies a decreasing cdf

PROOF We prove this result for the continuous case without loss of generality. Let
θ1 < θ2 and Fx(xθ) = P(X ≤ xθ) be the cdf of X,

Fx(xθ1) – Fx(xθ2) = ∫
R

1{y≤x}( fx(yθ1) – fx(yθ2) dy

(B9)= ∫
R

1{y≤x}R(y) fx(yθ1) dy

f x

f x

x

x

θ

θ
2

1

( )

( )

θ θ
α

θ
α

θ θ θ θ

: ( )       ( )

   : ( ) ( )

F X F X

x x

X X

L U

≤ ≤{ }
= ≤ ≤{ }

2 2
and

F x x F x xx U x L( ( )) ,    ( ( ))θ
α

θ
α

= =
2 2
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where

(B10)

is a decreasing function of x from the MLR property. We have now two cases:

1.

2.

The first case implies that Fx(xθ1) – Fx(xθ2) ≥ 0. For the second case, consider
and A = {y ∈ (–∞, x) : R(y) > 0} and B = {y ∈ (–∞, x) : R(y) ≤0}; then, from (B8),
we obtain

Fx(xθ1) – Fx(xθ2) = ∫A
1{y≤x}R(y) fx(yθ1) dy + ∫B

1{y≤x}R(y) fx(yθ1) dy

(B11)

Because R(y) is decreasing, we have that all points in A have to be smaller than
the points in B. Let 1A(x) and 1B(x), the smallest and largest values that 1{y≤x} can
achieve in A and B, respectively. Then, from (B10), we obtain

Fx(xθ1) – Fx(xθ2) ≥ 1A(x)∫A
R(y) fx(yθ1) dy + 1B(x)∫B

R(y) fx(yθ1) dy

(B12)

We have now that

(B13)

and

(B14)

Then (B11) becomes

(B15)
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Then,

(B16)

If y ∈ A with y > x, then 1A(x) = 1B(x) = 0. Otherwise, 1A(x) = 1 and 1B(x) = 0 or
1A(x) = 1B(x) = 1. This implies that 1A(x) ≥ 1B(x). This fact, together with (B15)
and (B16), results in the inequality

(B17)Fx(xθ1) ≥ Fx(xθ2)

This implies that the cdf of X is a decreasing function of the parameter θ.
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