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Abstract

Plausibility is an important quality criterion for stress test scenar-
ios: scenarios which are highly implausible undermine the credibility
of stress tests. In this paper we introduce a measure of plausibility
which is applicable under a wide range of distributional assumptions
for risk factor changes. We give explicit formulas for the plausibility
of scenarios under general elliptical distributions and in the special
cases of normally and t-distributed risk factor changes.

1 Introduction

Many banks conduct stress tests for their trading portfolio by considering
certain predefined standard scenarios. However, such standardized stress
tests do not take into account the composition of the bank’s portfolio. As a
consequence, it is quite likely that there exist scenarios which are much more
harmful to a bank’s portfolio than the ones used in standardized stress tests.
Therefore, instead of only using standard scenarios, one can search for the
scenario with maximum loss (MaxLoss): the worst case scenario.

But in general, MaxLoss will not be finite if all scenarios are considered.
It will be impossible to find a market state in which the portfolio has its
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smallest value, since the loss potential of a portfolio is usually unlimited. A
simple example is that of a portfolio which consists only of a written call
option: its value will fall without limit as long as the value of the underlying
instrument rises. For this reason, not all scenarios will be admitted, but the
search for MaxLoss will be restricted to some admissibility domain. Studer
(1999) uses the term trust region for admissibility domain. One of the nice
properties of MaxLoss is the fact that it is a coherent risk measure in the
sense of Artzner et al. (1999).

Besides size of loss, an important quality criterion for stress scenarios
is plausibility. Scenarios which are highly implausible undermine the cred-
ibility of stress tests. Even if the size of losses in a stress test is alarming,
management will be reluctant to take risk-reducing measures if the scenario
leading to such a loss is highly implausible. And rightly so. One way to
overcome this shortfall of stress tests is to consider only scenarios above a
certain plausibility threshold when calculating MaxLoss. The resulting stress
scenarios will satisfy both quality criteria: they lead to heavy losses and they
are sufficiently plausible.

This procedure requires a notion of plausibility for stress scenarios. In
Section 2 we propose a measure of plausibility which is applicable under a
wide range of distributional assumptions for risk factor changes. In Section 3
we give explicit formulas for the plausibility of a scenario and for admissibility
domains under elliptical distributions. As special cases we deal with the
multivariate normal and the multivariate t-distribution.

2 A Measure of Plausibility for Stress Sce-
narios

Which scenarios should be considered plausible, which implausible? A first
idea might be to call a scenario plausible if it is very close to the present
state of the market. Such a concept of plausibility is linked to the size of the
move from the present state to the future scenario: the larger the move, the
less plausible the scenario. This concept is intuitively appealing and widely
used.

However, it is not clear how to measure the “size” of a joint move in
several risk factors. If scenario A involves a large move in factor 1 and a
small move in factor 2, whereas scenario B involves a small move in factor



1 and a large move in factor 2, is scenario A or scenario B more plausible?
Certainly it will not do to take the average over the sizes of single factor
moves as size of the joint move. This would neglect dependencies between
risk factors which are crucial for measuring the plausibility of joint moves. A
scenario in which risk factors move against correlations is not plausible, even
if every individual risk factor movement is fairly plausible. For this reason,
correlations - or more generally dependencies - have to be taken into account
when defining plausibility conditions.

Another kind of plausibility statement is that a certain event is a “once
in 100 years event”. This is supposed to express that this or a more extreme
event occurs once in 100 years. Such a plausibility statement boils down
to a statement about a quantile: “This event is located at the 1/(250 - 100)
quantile.” (Assuming the year has 250 trading days and that we are speaking
about daily moves.) This suggests that the plausibility of a scenario should
be linked to the tail of the scenario. By tail we mean the probability of a
more extreme scenario - either on its right side (right tail) or left side (left
tail). For an upside move, for example, one might say that a scenario is more
plausible if its right tail is larger.

But for two reasons such a tail statement might also be inappropriate
as a statement of plausibility. First, we need a measure of plausibility not
just for moves in one risk factor, but for joint moves of several factors. And
there is a second problem with tail-based measures of plausibility. Consider
the density function plotted in Figure 1 on the left hand side. At x = 1%
the density function is lower but the right tail is greater than at z = 7%.
Should a move of +1% now have a higher or lower plausibility than a move
of +7%? In this case a tail-based measure of plausibility cannot agree with
a density-based measure.

This problem is not related to the fact that the mode of the distribution
is not x = 0%. If we set the origin of the z'-axes to the mode we get the
density plotted on the right hand side of Figure 1. At 2’ = —3% the density
is higher than at 2’ = +5%, but the left tail of 2’ = —3% is smaller than
the right tail of 2’ = +5%. Should a move of —3% have higher or lower
plausibility than a move of +5%?

In order to formulate a definition of plausibility we need a bit of notation.
A scenario is characterized by the values all risk factors have in the market
state corresponding to this scenario. These values can be gathered into a
vector = (ry,...,r,). Denote by rcy the current state of the market and
by Ar the relative change from rcy to the scenario . This means that the
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Figure 1: The density function of relative changes in one risk factor. A tail-
based measure of plausibility cannot agree with a density-based measure of
plausibility.

Left: Should a move of +1% have higher or lower plausibility than a move
of +7%?

Right: Should a move of —3% have higher or lower plausibility than a move
of +5% ¢

i-th component of Ar is given by (r; — rem)/Tomi-

f shall denote the multivariate density function of these relative risk factor
changes over the specified holding period. As we are interested in stress
testing, we focus on the unconditional distribution of risk factor changes.
The reason for this is that in a stress situation the gain of information about
future behavior of risk factors due to conditioning on the recent past is likely
to break down. Thus, f is the unconditional density function.

Note the one-to-one correspondence between r and Ar. This implies in
particular that any probability distribution for relative changes of risk factors
defines a probability distribution for the risk factors in absolute terms, and
vice versa.

Definition 1 The plausibility of a scenario T ess S the probability of the set
{Ir : f(A’)") S f(Arstress)}

of scenarios to which a move from ray has equal or lower density than the
move from rom L0 Tsiress-

By this definition the plausibility of a scenario rgess €quals the integral of
the density function f over the set {Ar : f(Ar) < f(APgiress)} which is one
minus the integral of f over the set {Ar : f(A”) > f(APsiress)}-

In the Introduction we argued that stress tests are only useful if the sce-
narios have a certain minimal plausibility. Now that we have specified the
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concept of plausibility we can translate the requirement of minimal plau-
sibility into an admissibility domain for stress scenarios: given a certain
plausibility threshold p between 0 and 1, the admissibility domain is the set
of all scenarios with plausibility greater or equal to p.

3 Plausibility of Scenarios under Elliptical Dis-
tributions

In this section we calculate the plausibility of a given scenario 7y and
characterize the admissibility domain for a given plausibility threshold p,
first for elliptical distributions in general and then for the special cases of the
normal and the t-distribution.

Definition 2 We call an n-dimensional distribution with density function f
elliptical if f 1s of the form

f(Ar) =g(ArT - R- A7), Ar e R" (1)

where R is a symmetric, positive definite n X n-matriz and g : Ry — Ry s
a non-negative function on the non-negative real numbers.

This definition is a special case of a more general definition which also applies
to distributions without density (Fang et al. 1987). If ¢ is a strictly decreasing
function the distribution is unimodal and each surface of constant density
is given by an ellipsoid. Furthermore, the admissibility domains will be the
volumes contained in the ellipsoids of equal density.

Lemma 1 If relative risk factor changes have an n-dimensional elliptical
distribution with strictly decreasing g in representation (1), then the plausi-
bility of a scenario rgyress 1S given by

k
2 z
Ell-Plaus(ryres) = 1 — (Det B)~% —1 / =1 g(£) dt (2)
0

with k? = ArL

stress

R A'r‘stress-

We write Ell-Plaus to indicate that we are now speaking about plausibility
under the assumption of an elliptical distribution.



Proof The scenarios with higher probability density than rg.s are the
points contained in the ellipsoid

E(rstress) = {A’I" : A’r‘T R Ar S k?}

Therefore, according to Definition 1, the plausibility of 7y ess is given by

Bl Plaus(r grees) — 1 — / g(AFT - R Ar) d(Ar). (3)

E("'stress)
In order to evaluate the n-dimensional integral in (3), we introduce the func-
tion h : R* — R" by h(As) = A'- As where A is an n X n-matrix with
R = AT . A. A can be taken from the Cholesky decomposition of R. Since

R > 0 we find Det A # 0 which assures the existence of A='. The rule of
substitution leads to

/ g(AFT - R Ar)d(Ar) = / g(h(As)T - R h(As)) [Det B (As)| d(As).
E("'stress) h_l(E(Tstress))

One easily verifies h™" (F(giress)) = Sn(k) and |Det h'(As)| = (Det R)~'/2,
where S, (k) is the n-dimensional sphere of radius k centered at the origin.
This yields

N

/ g(AFT - R Ar)d(Ar) = (Det R)- / g(AsT - As) d(As) .
E("'stress) Sn(k)

By introducing spherical coordinates one can verify the equation

/ g(t" -t) dt

Sn(k)

/ A(Su(t)) 9(t?) dt

where A(S,(t)) is the surface area of S,(¢). Applying (4) to the right-hand
side of (4) yields the Lemma. O

The admissibility domain for the plausibility threshold p is the set
{r:Ar"-R-Ar <k}

where k, is the & for which the right hand side of equation (2) equals p.

6



Multivariate normal distribution

Now we consider the special case where the n relative risk factor changes are
normally distributed with mean zero and non-singular covariance matrix X.
The density function is given by

BCL A N
f(Ar) = (Dot 5)} exp{ 2Ar Y- Ard,

for Ar € R". This is an elliptical distribution in the sense of Definition 2
with R = ¥! and
t

exp(—§).

M=

g(t) = (27)7*% (Det R)

g is indeed strictly decreasing so that we can apply Lemma 1 to get the
plausibility of a stress scenario:

2 k . t2
n-Plaus(rgress) = 1 — Q”TF(%)/O t eXP(_g) dt .

Substituting t? = z into the right hand side of this equation we get

k2
1 n T
n-Plaus(rgpess) = 1— 7n/ 2 texp(—2) dx
' 2n/2T(2) 2
= 1- Fx%(kQ) (4)

where k* = Arl . - Y Argues and Fyz (k%) is the value of the x*-
distribution function with n degrees of freedom at k?. We write n-Plaus to
indicate that we are now speaking about plausibility under the assumption
of a normal distribution.

The admissibility domain for the plausibility threshold p is the set
{r:Ar"- S Ar <k}

where kf) is given by the (1 —p)-quantile of the x2-distribution with n degrees
of freedom.



Multivariate t-distribution

When judging the plausibility of extreme market moves it is inappropriate to
assume market changes are normally distributed. This gives unrealistically
low plausibilities since financial data are usually fat-tailed. The class of
t-distributions has been used with more success to describe financial time
series, at least in one dimension. Here we use a multivariate t-distribution
for calculating the plausibility of stress scenarios.

Multivariate t-distributions are n-dimensional distributions for which all
marginals are t-distributions. The most commonly used is the t-distribution
with common denominator (Johnson and Kotz 1972, 134ff). Its density func-
tion is

(%) (Det A) > e ATz i

flx) = (rv)"/2 F(%) (1+ l/ )T, (5)

where * € R, v is a positive real number, and A is a positive definite,
symmetric matrix. All the marginal distributions are t-distributions with
the same number of degrees of freedom, namely v. For v > 2 the covariance
matrix exists and is given by —“SA.

In order to describe market moves with such a t-distribution (v > 2)we
first re-scale risk factor changes so that they all have variance v/(v —2). The
re-scaled relative risk factor changes are given by

Am Arn

Y
v—2 oy v—2 an

A’r—

where o; is the standard deviation of the i-th original risk factor change Ar;.
Now assume that the re-scaled relative changes Ar are distributed according
to the density (5). So the re-scaled risk factor changes have mean zero and
covariance matrix —%5 A. (A is the correlation matrix of the original risk
factor changes Ar.)

In order to calculate t,-Plaus(Pgess), the plausibility of a scenario ryyess
under a multivariate t-distribution with common denominator and with v

degrees of freedom, we note that this is an elliptical distribution in the sense
of Definition 2 with R = A~! and

r(se)
(7))

u+n

g(t) = (Det R)> (1 + >



By Lemma 1 we get

2 T(%
/2T

t,-Plaus(rypress) = 1

v
2

with j2 = APk o - A1 Argyess = S55k%, where k2 = Arl - 57 Argyres
with ¥ the covariance matrix of the original relative risk factor changes.

The admissibility domain for the plausibility threshold p is the set
{r:Ar" A7 Ar <57}

where j, is the j for which the right hand side of equation (6) equals p.

What makes t-distributions a popular choice for modeling market data is
that they are elliptical and heavy tailed. Extreme events have a higher plau-
sibility under the assumption of t-distributed changes of risk factors than
under the assumption of normally distributed changes. The difference is
enormous. Black Friday under the assumption of normality has a plausi-
bility of 2 - 10~77, which corresponds to a once in 2 - 10" years-event. In
contrast, under the assumption of t,-distributed changes, Black Friday has a
plausibility of 2 - 1074, which corresponds to a once in 20 years-event.! Here
is a table of the values of n-Plaus and of t4-Plaus for n = 5, 50, and 500
dimensions and for £ = 5,10, and 15. k£ measures the size of the ellipsoid:
the lengths of the major axes are proportional to k.

Dimensions | Size | t,-Plaus n-Plaus
n=>5 | k=5 0.0222 0.00014
10 0.00165 5.29- 102
15 0.00034 1.26 - 10746
n=50 | k=5 0.5836 0.9988
10 0.0917 3.45-107°
15 0.0219 4.78 - 107
n=500 | k=5[1—-9-108%]1—-2-10"?*
10 0.9582 1—4-107%
15 0.6495 1—4-10%

!These numbers for the plausibility were calculated from equations (4) and (6) for
a scenario representing the joint move of seven important risk factors on Black Friday,
October 16,1987. The covariances were estimated from the daily changes in the year 2000.



Two points are noteworthy. First, if we fix n, we observe the consequen-
cies of the fact that the t4-distribution is more fat-tailed than the normal
distribution: For large moves the t4-distribution has a higher density than
the normal distribution, therefore the plausibility of large moves is higher
under the ty-distribution. Second, if we fix k, we observe that the plausi-
bility of a move of a certain size k increases as the number n of dimensions
increases. Or, put in other words, if we admit moves above a certain plausi-
bility threshold, the size k of the admitted moves increases as the number of
dimensions increases. This holds for both, the normal and the t,-distribution.
In the special case of linear portfolios, Studer (1997: p.44) drew attention
to a drawback of MaxLoss which results from this second observation.

We are aware that t-distributions still do not capture all of the properties
of financial data. As compared to the normal distributions, they at least
provide better modeling of fat tails of the marginal distributions and also
have more realistic multivariate properties, as for example a non-zero tail
dependence (Lindskog, 2000). Still, the multivariate t-distribution belongs
to the class of elliptical distributions while financial data tend to be non-
elliptically distributed.

Additionally, the assumption of changes being t-distributed is at odds
with the Black-Scholes framework often assumed for the valuation of options.
This threat of inconsistency materializes when on the one hand for defining
the admissibility domain risk factor changes are assumed to be t-distributed
and on the other hand for evaluating the loss of option positions risk factor
changes are assumed to be normally distributed.
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