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Abstract

We consider "copula skew models" that account for the correlation smile in the pri-

cing of synthetic CDO tranches. These can be viewed as stochastic or local correlation

models and are extensions of the well-known one factor Gaussian copula model. We

analyse these models through their conditional default probability distributions and

marginal compound correlations. We also give some examples of using a particular sto-

chastic correlation model to fit the market, illustrating the stability of the parameters

over time.
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Introduction
The factor copula approach has proved to be a powerful tool for pricing CDOs within a semi-analytical
framework (see Gregory & Laurent [2003], Andersen, Sidenius & Basu [2003], Hull & White [2004], Laurent
& Gregory [2005]). While the factor approach might also be used in the framework of intensity or structural
models, it has been predominantly coupled with a copula approach. Though copula models fail to provide
satisfactory dynamics of credit spreads and exhibit various kinds of unsatisfactory time instability, they
usually allow independent specification of the dependence structure between the default times and the
marginal credit curves, the latter being considered as market observables (single name CDS or index CDS).

Thus, despite the previous drawbacks, the one factor Gaussian copula (see Li [2000]) has become a market
standard for the pricing of CDOs. The development of a liquid market of standardized CDO tranches
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has shown the Gaussian copula model to be inadequate and there has in the last year been a build up of
literature on correlation skew modelling and a reliance by market practioners on base correlation approaches.

The major developments and movements in the tranche market during 2005 and the already well-known
deficiencies of the market standard modelling approach have led to even stronger calls than before for second
generation models for CDO pricing based on realistic dynamics of market variables (i.e. credit spreads). This
is clearly an important direction but, perhaps not surprisingly, researchers have tried to extend gradually
the standard model to incorporate some skew features. The aim of this paper is clearly related to the
latter approach, where we will give an overview of the general framework of "copula skew models", explain
some connections between different ideas and describe results using one such model. This approach can
be considered as complementary or an alternative to the base correlation approach which is currently the
predominant (and perhaps sole) method used to industrially price and risk manage CDO and CDO squared
tranches. We see this as a next step on a long path leading to next generation models, which will exist

outside the copula framework.

Whereas in the one factor Gaussian copula correlation is a deterministic parameter, further extensions involve
stochastic correlation (Burtschell et al. [2005], Schloegl [2005]) or stochastic risk exposure (see Andersen
and Sidenius [2005]). The risk exposures may or may not be associated with a factor structure and may
or may not be factor dependent. When the correlation is stochastic and independent of the factor, we will
talk of a stochastic correlation model. When the correlation depends upon the factor, we will talk of a local
correlation model (see Turc et al. [2005]). This terminology parallels the one used for equity derivatives.

As can be seen in Burstchell et al. [2005], Hull and White [2005], Sharke [2005], the distributions of
conditional default probabilities are the main drivers of CDO prices within factor copula models. Such

distributions also correspond to large portfolio loss distributions. We will thus further provide some emphasis
on these quantities.

The paper is organized as follows. The first section recalls some characteristics of Gaussian and factor
copula models and discusses how they may be inverted in order to derive a marginal compound correlation.
Section 2 details the case of stochastic correlation models with emphasis a simple approach incorporating
idiosyncratic and systemic risk. In section 3, we consider state dependent correlation models with a focus
on random factor loading and local correlation models. Section 4 is dedicated to comparisons between the
different approaches and a study of a particular stochastic correlation model.

1 Factor copulas and compound correlation

1.1 Gaussian and factor copulas
In the one factor Gaussian copula with flat correlation parameter ρ, we consider some latent variables:

Vi = ρV +
p
1− ρ2V̄i, i = 1, . . . , n, (1.1)

where V, V̄i, i = 1, . . . , n are independent Gaussian random variables. We denote by F (t) = Q(τ i ≤ t) the
marginal default probability for time horizon t4 and define default times τ i of names i = 1, . . . , n by setting

4For notational simplicity, we consider here equal credit spreads and a unique correlation parameter ρ
(flat correlation).
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τ i = F−1 (Φ(Vi)). The default times are conditionally independent upon V and the conditional default
probabilities are given by:

p
i|V
t = Q(τ i ≤ t | V ) = Φ

Ã
Φ−1 (F (t))− ρVp

1− ρ2

!
. (1.2)

Tranche Market Gaussian

[0-3%] 24.0% 19.3%

[3-6%] 82.5 234.7

[6-9%] 26.5 82.0

[9-12%] 14.0 32.9

[12-22%] 8.75 6.99

[22-100%] 3.53 0.05

Table 1. Illustration of the inability of a flat correlation model to fit the market tranche quotes. The market
quotes are as of the 30-Aug-05. The correlation in the Gaussian copula model was chosen via a least squares
fit to the traded tranche premiums. Note that the [22-100%] tranche is not traded but can be implied from
the rest of the capital structure and level of the index.

The previous one factor Gaussian copula model leads to a semi-explicit pricing of CDO tranches but does
not match the market prices (see Table 1) and has therefore been extended in various directions. As in
Hull and White [2004] or Kalemanova et al. [2005], one can consider other distributions for the factor V
and the idiosyncratic risks V̄i, such as Student t or NIG. Other default times models to be discussed below
or in Burstchell et al [2005], Mortensen [2005], Willeman [2005] remain in the factor copula framework.

There exists a factor V such that default times τ i, i = 1, . . . , n are conditionally independent upon V . Loss
distributions and CDO tranche premiums then depend upon the specification of the conditional default
probabilities Q(τ i ≤ t | V ) = pi|Vt . For simplicity, we moreover assume that the distribution of pi|Vt is name
invariant (homogeneity assumption) and denote by G the common distribution function5. In the case of the
Gaussian copula, we can easily derive G as:

p ∈ [0, 1]→ G(p) = Q
³
p
i|V
t ≤ p

´
= Φ

Ãp
1− ρ2Φ−1(p)− Φ−1(F (t))

| ρ |

!
. (1.3)

Assuming a constant recovery rate of δ, the pgf of the aggregate loss L = (1− δ)
Pn
i=1 1τ i≤t is given by:

ψL(u) = E[u
L] =

nX
i=1

Q(L = i(1− δ))ui(1−δ) = E
h³
p
.|V
t u1−δ + 1− p.|Vt

´ni
=

Z 1

0

¡
pu1−δ + 1− p¢n dG(p).

Therefore, for i = 0, . . . , n,

Q(L = i(1− δ)) =

Z 1

0

Ã
n

i

!
pi(1− p)n−idG(p),

5 for notational simplicity, we omit the time dependence in G.
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and the distribution the distribution function of the aggregate loss, GL is given through:

GL(i(1− δ)) = Q(L ≤ i(1− δ)) =
iX

k=0

Q(L = k(1− δ)).

We also recall another useful result related to large portfolio approximations, firstly stated by Vasicek [1987]
in the one factor Gaussian copula framework. In the framework of factor copula models the aggregate loss
L converges a.s. to (1− δ)p

.|V
t as n tends to infinity. As a consequence, in the case of a zero-recovery rate,

GL converges weakly to G6. For large portfolios, we will then make the approximation, GL(p) = G
³

p
1−δ

´
for 0 ≤ p ≤ 1.

From the previous results, one can readily price CDO tranches. To simplify the exposition, we will further
neglect discounting effects. The up-front premium of an [α,β] CDO tranche can be obtained from the distrib-

ution function of the aggregate loss GL as: 1−GL(β)+
R β
α

³
p−α
β−α

´
dGL(p). Integrating by parts, the premium

can also be written as:
R β
α

³
1−GL(u)
β−α

´
du, which can be approximated for large n by

R β
α

³
1−G(u/(1−δ))

β−α
´
du.

The distribution function G also allows Monte Carlo simulation of default indicators 1τi≤t, i = 1, . . . , n.
This can be useful for instance for the pricing of CDO squared. We firstly draw some random variable U
uniformly distributed over [0, 1]. Then G−1(U), where G−1 denotes the generalized inverse of G, admits
distribution function G. We can then simulate 1τi≤t, i = 1, . . . , n by drawing independently n Bernoulli

random variables with parameter G−1(U).

1.2 marginal compound correlation
Since the market does not price with the Gaussian copula, it has become a standard practice to extract
compound or base correlations from market prices7 . Turc et al. [2005] have recently introduced the concept
of marginal compound correlation as a limit case of the usual compound correlation of CDO tranches.

Let us consider a mezzanine tranche with attachment-detachment points of α and α+η. Neglecting discount-
ing effects, the upfront premium is given by 1

η

R α+η
α

(1−GL(u)) du. For "small" η, the payoff corresponds
to a digital option on the aggregate loss at the maturity of the tranche, with strike α, while the upfront
premium is equal to 1−GL(α)8 . On the other hand, for a large homogeneous portfolio, the distribution func-
tion of a large homogeneous portfolio can be approximated by the distribution function of the conditional
default probability G. The up-front premium of the above mezzanine tranche can then be approximated by
1−G

³
α
1−δ

´
.

The upfront premium of such a [α,α]mezzanine tranche of a large homogeneous portfolio computed under the
one factor Gaussian copula assumption with correlation parameter ρ and neglecting the discounting effects

6This means that GL(p) converges to G(p) for all continuity points of G. In the examples below, G is
continuous apart from 0 and 1. On the other hand, since L ≤ 1 and p.|Vt ≤ 1, GL(1) = G(1) = 1.

7Thanks to the theory of stochastic orders, it can be proved that increasing ρ leads to a decrease in
the upfront premium of an equity tranche (see Burtschell et al. [2005]). Thus, base correlation is unique

whenever it exists, which may not be the case.
8Thanks to the right-continuity of GL.
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is given by: 1−Φ
µ√

1−ρ2Φ−1( α
1−δ )−Φ−1(F (t))
|ρ|

¶
(see equation (1.3)). The marginal compound correlation for

that mezzanine tranche is denoted by ρ̄(α) ∈ [0, 1]9 and is such that:

G

µ
α

1− δ

¶
= Φ

⎛⎝p1− ρ̄(α)2Φ−1
³

α
1−δ

´
− Φ−1(F (t))

ρ̄(α)

⎞⎠ . (1.4)

ρ̄(α) is the correlation parameter to be put in the Gaussian copula model in order to price correctly the
previous [α,α] mezzanine tranche. Given a marginal compound correlation α ∈ [0, 1] → ρ̄(α), we can
easily derive G and price basket credit derivatives such as CDOs or CDO squared, either by semi-analytical
techniques, by large portfolio approximations or by Monte Carlo.

We now consider the inverse problem of finding a marginal compound correlation from the distribution of

conditional default probabilities G. To ease the discussion, we assume here that δ = 0. As an example of
the difficulties involved, let us assume that F (t) = 0.4 and G being associated with a discrete distribution
with probability mass of 0.5 at 0 and 0.5 at 0.810. For 0.5 < α < 0.8, G(α) = 0.5, thus G(α) < 1−F (t) and
there is then no solution to equation (1.4)11. Unfortunately, marginal compound correlation may not exist
for consistent pricing models.

Equation (1.4) can equivalently be written as:

ρ̄(α)Φ−1 (G(α)) +Φ−1 (F (t)) =
p
1− ρ̄(α)2Φ−1(α)12 .

By squaring up the previous equality, we obtain the following second order equation, from which we must

consider the positive roots13:³
Φ−1 (G(α))2 +Φ−1(α)2

´
ρ̄2 + 2Φ−1 (G(α))Φ−1 (F (t)) ρ̄+Φ−1 (F (t))2 − Φ−1(α)2 = 0. (1.6)

Let us firstly discuss the existence of a solution to the previous equation. We denote ∆0 = Φ−1(α)2 ×³
Φ−1 (G(α))2 +Φ−1(α)2 − Φ−1 (F (t))2

´
. Equation (1.6) has real roots if and only if ∆0 ≥ 0 but this may

not be the case as illustrated by the following example. We assume that pi|Vt is discretely distributed with

9Since only | ρ | is involved in the upfront premium of the mezzanine tranche, we can restrict to correlation
parameters within 0 and 1. Let us also remark that α → Φ

µ√
1−ρ2Φ−1(α)−Φ−1(F (t))

ρ

¶
is not a distribution

function for negative ρ’s.
10It can be checked that

R 1
0
pdG(p) = F (t) which means that the expected conditional default probability

is the marginal default probability.
11The right hand term of equation (1.4) decreases from 1 to 1− F (t) as ρ̄(α) increases from 0 to 1.
12We recall that for notational simplicity, δ = 0.
13Let us emphasize that any solution of:

ρ̄(α)Φ−1 (G(α)) +Φ−1 (F (t)) = −
p
1− ρ̄(α)2Φ−1(α), (1.5)

is also a solution of equation (1.6). The roots of equation (1.6) are the roots of equation (1.4) plus the roots
of equation (1.5). In the numerical examples below, we firstly write the roots of equation (1.6) and then
check that they indeed solve equation (1.4).
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probability 0.5 to be equal to 0 and 0.5 to be equal to 0.5. This leads to a marginal default probability of
0.25. G is constant on ]0,0.5[ and equal to 0.5. Then ∆0 < 0 for α ∈]0.25, 0.5[.

Let us now discuss whether equation (1.6) admits a unique solution. If Φ−1 (F (t))2 > Φ−1(α)2, and provided
that∆0 > 0, there are two real roots of the same sign. We further meet some practical cases where we actually
have two positive roots to equation (1.6) that appear to be also solutions of equation (1.4).

The good news is that for any given α ∈ [0, 1], there are at most two marginal compound correlations
ρ̄(α)14. However, there may be zero or two marginal compound correlations. The non uniqueness is not
really a mathematical problem, since we can arbitrarily choose one of the two solutions, which leads by
construction to the same value of G(α). As seen from above, only G(α) is involved in loss distributions and
price computations. However, it obviously casts some doubt about the economic meaning of such a quantity
and the ability to smoothly interpolate between tranches.

2 Stochastic correlation
The inability of the Gaussian Copula Model to fit the market tranches, as illustrated in Table 1 is well-known.

Generally, we can say that it underprices the equity and senior tranches and overprices the mezzanine. We
feel that the concept of local correlation to be described below is a useful and insightful one but is not a
suitable way in which to build and parametrize a skew model. We now consider a general class of stochastic
correlation models which we believe offer different ideas and like stochastic volatility models aim to explain
rather than simply fit the market. We could consider stochastic correlation to be the simplest of the copula
skew models but given the obvious shortcomings of the copula framework, we consider the simplest most
intuitive approach to be preferable.

One nice feature of stochastic correlation models15 is that the marginal distributions of the latent variables
remain Gaussian. This eases calibration and implementation of the models. The general structure of a
stochastic correlation model involves some latent variables Vi:

Vi = ρ̃iV +

q
1− ρ̃2i V̄i, i = 1, . . . , n, (2.1)

where n is the number of names, V, V̄i, i = 1, . . . , n Gaussian random variables, all these being jointly
independent, ρ̃i are some random variables taking values in [0,1], independent from the V, V̄i, i = 1, . . . , n.

Thanks to the independence between ρ̃i and V, V̄i, for any i = 1, . . . , n, given ρ̃i, Vi follows a standard
Gaussian distribution. Thus, the marginal distribution of Vi is also standard Gaussian. We can then still
model the default times τ i, i = 1, . . . , n as:

τ i = F
−1
i (Φ(Vi)) , (2.2)

where Φ is the Gaussian cdf. Stochastic correlation models are related to mixtures of Gaussian copulas. We
refer to Burtschell et al. [2005] for further discussion.

14Since these are solution of the second order equation (1.6).
15Compared with state dependent factor exposure or local correlation models.
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2.1 correlation regimes and idiosyncratic risk
We assume here that V, V̄i, ρ̃i, i = 1, . . . , n are jointly independent. We denote by F̃ the distribution function
of ρ̃i. For simplicity, we assume thereafter that the ρ̃i are identically distributed. The latent variables Vi
are conditionally independent upon V . We thus deal with a one factor copula. The conditional default
probabilities can be written as:

p
i|V
t = Q(τ i ≤ t | V ) =

Z 1

0

Φ

Ã
Φ−1 (Fi(t))− ρVp

1− ρ2

!
dF̃ (ρ). (2.3)

Let us consider a simple example within the previous framework, associated with a binary distribution for
the risk factor exposures, ρ̃i = (1−Bi)ρ+Biβ, which leads to:

Vi = ((1−Bi)ρ+Biβ)V +
p
1− ((1−Bi)ρ+Biβ)2V̄i, i = 1, . . . , n, (2.4)

where Bi are Bernoulli random variables, V, V̄i, i = 1, . . . , n Gaussian random variables, all these being
jointly independent. We denote by q = Q(Bi = 1), ρ and β lie between 0 and 1. Depending on Bi being

equal to 0 or 1, we have a correlation parameter equal to ρ or to β. There are two possible regimes for a
given name, one in which it16 is correlated to the factor V with different correlation parameters.

From iterated expectations theorem and the independence between V and Bi, we have:

p
i|V
t = Q

¡
Vi ≤ Φ−1 (Fi(t)) | V

¢
= (1−q)Q ¡Vi ≤ Φ−1 (Fi(t)) | V,Bi = 0¢+qQ ¡Vi ≤ Φ−1 (Fi(t)) | V,Bi = 1¢ ,

which leads to:

p
i|V
t = Q (τ i ≤ t | V ) = (1− q)Φ

Ã
Φ−1 (Fi(t))− ρVp

1− ρ2

!
+ qΦ

Ã
Φ−1 (Fi(t))− βVp

1− β2

!
, (2.5)

which is simply an average of the conditional (on V ) default probabilities corresponding to two one factor
Gaussian copula models. From this expression of the conditional default probabilities, one can go through
the computation of the pgf of the number of defaults or of the loss distribution and then to the computation
of basket default or CDO tranche premiums.

As for the computation of the distribution function of pi|Vt , let us introduce the real function J such that

J(v) = (1−q)Φ
µ
Φ−1(Fi(t))+ρv√

1−ρ2

¶
+qΦ

µ
Φ−1(Fi(t))+βv√

1−β2

¶
for all v in R17. J is increasing from 0 to 1. We denote

by G the distribution function of pi|Vt . Let z ∈ R. Then G(J(−z)) = Q
³
p
i|V
t ≤ J(−z)

´
= Q(J(−V ) ≤

J(−z)) = Φ(−z). The graph {(J(−z),Φ(−z)) , z ∈ R} can be used to plot the distribution function of pi|Vt .

16"it" refers to the latent variable Vi. Let us remark that we equivalently write:

Vi = (1−Bi)×
³
ρV +

p
1− ρ2V̄i

´
+Bi

µ
βV +

q
1− β2V̄i

¶
, i = 1, . . . , n,

which involves one factor Gaussian models with different correlations. It can be checked that the joint
distribution of the Vi is not Gaussian and thus, while we deal with a factor copula, we do not deal anymore
with a Gaussian copula.
17for notational simplicity, we omit the dependence upon time horizon t and name i.
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Perhaps the most obvious use of a model of this type is to incorporate a state of independence by setting (say)
β = 0. We can think of this as the incorporation of idiosyncratic risk as names defaulting in this state do so

with no other impact on the other names. An obvious example of the importance of this is evidenced by the
spread widening and downgrades of Ford and GMAC early this year. A knock-on effect of this was higher
equity and lower mezzanine tranches premiums in the tranche market coming from a perception of increased
idiosyncratic risk in the underlying portfolio. The above specification allows us to apply idiosyncratic risk
on a name by name basis. For example, names with wide spreads might be associated with large proportions
of idiosyncratic risk.

2.2 dependent correlation and systemic risk
In addition to idiosyncratic risk, the inability to fit the market comes from the overpricing of the mezzanine
or equivalently the underpricing of the senior tranches. We can see this clearly when looking at the market

premiums of increasingly senior tranches which do not decrease rapidly, suggesting the presence of some
lower bound. It can also be observed from the premiums of the senior tranches on iTraxx and CDX which
cover losses of [22-100%] and [30-100%] respectively. These tranches are not traded but their premium can
be extracted from the rest of the capital structure and the index level. Their premiums are not negligible,
even though these tranches can withstand tens of credit events18 .

With the latter point in mind, the obvious component still missing in the model is some sort of systemic
risk. One way in which this could be incorporated is via a systemic event such as described in Tavares
et al. [2004] or Trinh et al. [2005]. In this framework, with a certain probability, all names will go to
default simultaneously. This has the attraction that presumably this systemic probability is very closely
related to the super senior tranche premium. An intuitive problem with the approach is that the systemic

risk is unrelated to portfolio size and always related to default of the entire pool, irrespective of the size19 .
There are also technical issues, most obviously that there is a cap on the systemic risk spread which is the
tightest spread in the underlying portfolio. Even if this is not a direct problem for pricing it complicates the
characterisation of the greeks, for example the credit delta may have an unusual behaviour. Furthermore,
the fact that the systemic risk will remain unchanged as spreads move is questionable.

An alternative approach that we will follow involves the incorporation of comonotonic risk which corresponds
to a state of 100% correlation. In the model, this corresponds to perfect correlation between default times.
We could question this on economic grounds since perfectly correlated names may default years apart and
we become certain on the ordering of defaults (more risky names always default before less risky names)20 .

However, this approach is more convenient than the above representation for names with different spreads
and raises no technical problems. Furthermore the effect of comonotonicity is exactly to increase both equity
and senior tranche premiums which is what we obviously must do (see Table 1).

18Assuming a recovery of 30%, the iTraxx super senior tranche can withstand 39 credit events whilst 53
credit events will not yet cause a loss on CDX. Of course, lower recoveries will decrease these numbers.
19There are ways to get around this (see Elouerkhaoui [2003]), although this will destroy the natural

simplicity of the approach.
20We can of course generalise this to a state of simply high correlation which part solves of the less

economically intuitive features of comonotonicity.
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For that purpose, we consider the following model. For simplicity, we restrict to the case where the depen-
dence structure is symmetric:

Vi = ((1−Bs)(1−Bi)ρ+Bs)V +
³
(1−Bs)

³
(1−Bi)

p
1− ρ2 +Bi

´´
V̄i i = 1, . . . , n, (2.6)

where V̄1, . . . , V̄n, V,Bs, B1, . . . , Bn are independent, V̄1, . . . , V̄n, V are standard Gaussian variables, Bs,
B1, . . . , Bn are Bernoulli random variables and 0 ≤ ρ ≤ 1. We denote by q = Q(Bi = 1) and qs = Q(Bs = 1).
Thus:

ρ̃i = (1−Bs)(1−Bi)ρ+Bs, (2.7)

which is indeed associated with a stochastic correlation model21 . The marginal distribution of ρ̃i is discrete,

taking value 0 with probability q(1− qs), ρi with probability (1− q)(1− qs) and 1 with probability qs. The
conditional upon V and Bs distribution of ρ̃i is discrete taking value Bs with probability q and (1−Bs)ρ+Bs
with probability 1− q. Whenever Bs = 1, the correlation is equal to 1. While in the previous subsection the
correlations were stochastic but independent, in the latter model the correlation parameters are themselves
(positively) correlated. As mentionned before, rather than a comonotonic state, we could have an additional
(high) correlation parameter. This is clearly a way to extend the model but we have found that in fitting
to the market this value will always be very close to 1.

Default times are independent upon V,Bs. We denote the conditional default probabilities by p
i|V,Bs
t =

Q (τ i ≤ t | V,Bs). Since Q (τ i ≤ t | V,Bs) = Q
¡
Vi ≤ Φ−1 (Fi(t)) | V,Bs

¢
, we can write the conditional de-

fault probabilities as:

p
i|V,Bs
t = (1−Bs)×

Ã
(1− q)Φ

Ã
Φ−1 (Fi(t))− ρVp

1− ρ2

!
+ qFi(t)

!
+Bs1V≤Φ−1(Fi(t)). (2.8)

Let us now consider the computation of the pgf of the accumulated losses L(t) =
Pn
i=1Mi1τ i≤t, where

Mi = 1− δi is the risk exposure for name i and δi the corresponding recovery rate, which is assumed here
to be deterministic22 :

ψL(t)(u) = E
h
uL(t)

i
= qsE

h
uL(t) | Bs = 1

i
+ (1− qs)E

h
uL(t) | Bs = 0

i
.

The term E
£
uL(t) | Bs = 0

¤
corresponds to the pgf within the two states stochastic correlation model with

one idiosyncratic state (risk exposure equal to zero) and can be computed by some quadrature technique asR
E
£
uL(t) | V = v,Bs = 0

¤
ϕ(v)dv, where ϕ is the Gaussian density and:

E
h
uL(t) | V,Bs = 0

i
=

nY
i=1

³
q
i|V,Bs=0
t + p

i|V,Bs=0
t uMi

´
,

p
i|V,Bs=0
t = (1− q)Φ

µ
Φ−1(Fi(t))−ρV√

1−ρ2

¶
+ qFi(t) and q

i|V,Bs=0
t = 1− pi|V,Bs=0t .

21It can be easily checked that (1−Bs)
³
(1−Bi)

p
1− ρ2 +Bi

´
=
q
1− ρ̃2i .

22Thus, the distribution of L(t) is discrete. One could easily cope with stochastic recovery rates and
compute the characteristic function of the aggregate losses in that framework.
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Let us now compute the term E
£
uL(t) | Bs = 1

¤
. For notational simplicity, we assume that the names

are ordered, with name 1 associated with the highest default probability and name n associated with the

lowest default probability, i.e. F1(t) ≥ . . . ≥ Fn(t). Conditionally on Bs = 1, ρ̃i = 1, Vi = V , thus
τ i = F

−1
i (Φ(V )), i = 1, . . . , n. In the comonotonic case, the accumulated losses can only take n+ 1 values:

0,M1,M1+M2, . . . ,M1+ . . .+Mn. Conditionally on Bs = 1, the loss equal toM1+ . . .+Mi−1 occurs with
probability Fi−1(t)−Fi(t). The probability of no losses occurring is 1−F1(t) while the probability of a loss
equal to M1 + . . .+Mn is Fn(t). This provides an analytical expression23 of the conditional on Bs = 1 pgf
E
£
uL(t) | Bs = 1

¤
as:

1− F1(t) + (F1(t)− F2(t))uM1 + . . .+ (Fi−1(t)− Fi(t))uM1+...+Mi−1 + Fn(t)u
M1+...+Mn . (2.9)

This completes the computation of the pgf of the loss distribution ψL(t). Going back to the loss distribution
is then rather straightforward, especially when the risk exposures are equal M1 = . . . = Mn = M since
ψL(t)(u) is a polynomial of u

M whose coefficients can be easily computed by recursion. When the recovery
rates are not constant, the previous approach can be adapted through some bucketing technique.

2.3 distribution of conditional default probabilities
We now look after the distribution of the conditional default probabilities p.|V,Bst . For notational simplicity,
we will further remove the name dependence in the superscripts. Under the homogeneity assumption, i.e.
F1(t) = . . . = Fn(t) = F (t), δ1 = . . . = δn = δ24 and provided that the number of names n is large,
the aggregate loss L(t) = (1 − δ) × 1

n

Pn
i=1 1τi≤t has the same distribution as (1 − δ)p

.|V,Bs
t . We can

thus compute CDO or CDO squared tranche premiums and marginal compound correlations out of the
distribution function of p.|V,Bst

25.

The distribution function of conditional default probabilities G is given by: p ∈ [0, 1]→ G(p) = Q(p
.|V,Bs
t ≤

p) and:

G(p) = (1− qs)
µ
1qF (t)<p<1−q+qF (t)Φ

µ
1

ρ

µp
1− ρ2Φ−1

µ
p− qF (t)
1− q

¶
−Kt

¶¶
+ 1p≥1−q+qF (t)

¶
+ qsΦ(−Kt),

(2.10)

for 0 ≤ p < 1, where qs = Q(Bs = 1) and q = Q(Bi = 1), Kt = Φ
−1 (F (t)) (see Appendix).

Let us remark that when qs > 0, 0 and 1 have positive probability: Q
³
p
.|V,Bs
t = 0

´
= qsΦ(−Kt) =

qs(1 − F (t)) and Q
³
p
.|V,Bs
t = 1

´
= qsΦ(Kt) = qsF (t). Since qs = Q

³
p
.|V,Bs
t ∈ {0, 1}

´
, increasing qs leads

to increase the weights associated with extreme probabilities and decrease the probabilities of intermediate

23We might have proceeded as above, starting from p
i|V,Bs=1
t = 1V≤Φ−1(Fi(t)), i = 1, . . . , n and then

compute E
£
uL(t) | Bs = 1

¤
as
R
E
£
uL(t) | V = v,Bs = 1

¤
ϕ(v)dv. However, when the default probabilities

Fi(t) differ, E
£
uL(t) | V = v,Bs = 1

¤
is a non-smooth function of v and many points are required in the

numerical integration. The above approach is then more accurate and faster.
24As above, the recovery rates are assumed to be deterministic.
25Let us emphasize that in the homogeneous case, we can compute the pgf of the aggregate loss only

through the distribution function of conditional default probabilities G. Indeed, we have: ψL(u) =R 1
0

¡
pu1−δ + 1− p¢n dG(p).
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probabilities26 . Increasing qs should result in increasing the premiums of equity and senior tranches and
decreasing the premiums of mezzanine tranches.

The distribution function is constant between 0 and qF (t) and between 1 − q + qF (t) and 127. The inner
interval ]qF (t), 1−q+qF (t)[ is associated with a smooth distribution function. This interval always contains
the marginal default probability F (t). As q decreases from 1 to 0, the inner interval increases from ]F (t), F (t)[
to ]0, 1[. Decreasing the idiosyncratic probability q extends the support of the continuous part of the
distribution. This should decrease premiums of intermediate mezzanine tranches and increase premiums of
junior mezzanine and senior tranches. When q < 1 and 0 < ρ2 < 1, there are no probability masses at qF (t)
and 1− q+ qF (t). If ρ2 < 50%, G has a right derivative qF (t) and a left derivative at 1− q+ qF (t) equal to
zero. In this case, the distribution function G is differentiable at qF (t) and at 1− q + qF (t). If ρ2 > 50%,
then the right derivative at qF (t) and the left derivative at 1− q+ qF (t) are infinite. Even when ρ2 < 50%,
there might be a sharp increase of G after qF (t). When q = 1, there is a probability mass of 1− qs at F (t)
(associated with the independence case).

We can also derive the (lower) quantile function G−1. For 0 ≤ u ≤ qs(1 − F (t)), then G−1(u) = 0. For
1− qsF (t) ≤ u ≤ 1, G−1(u) = 1. For qs(1− F (t)) < u < 1− qsF (t),

G−1(u) = (1− q)Φ
Ã

1p
1− ρ2

µ
ρΦ−1

µ
u− qsΦ(−Kt)

1− qs

¶
+Kt

¶!
+ qF (t).

2.4 stochastic orders and risk management
Increasing correlation in a stochastic correlation model leads to a decrease in equity tranche premiums. More
precisely, let us consider two stochastic correlation models. We denote by ρ̃1, . . . , ρ̃n and by β̃1, . . . , β̃n the

correlation parameters. We assume at this stage the ρ̃i i = 1, . . . , n are iid as are the β̃i, i = 1, . . . , n. We
denote by F̃ρ the distribution function of the ρ̃i’s and by F̃β the distribution function of the β̃i’s. Let us
assume that F̃β(u) ≤ F̃ρ(u) for all u ∈ [0, 1]. This means that ρ̃i ≤ β̃i with respect to first order stochastic
dominance. As a consequence, there exists some non-negative random variables ν1, . . . , νn independent
from V, V̄1, . . . , V̄n such that β̃i = ρ̃i + νi, i = 1, . . . , n where the previous equalities hold in distribution28.
Conditionally upon ρ̃1, . . . , ρ̃n, ν1, . . . , νn the latent variables in the two models are conditionally Gaussian,
with correlation parameters equal to ρ̃1, . . . , ρ̃n and ρ̃1 + ν1, . . . , ρ̃n + νn. We thus have more dependence
with respect to the supermodular order in the second model29.

Thanks to the previous analysis and since ρ̃i = (1 − Bs)(1 − Bi)ρ + Bs, we conclude that increasing ρ,
increasing qs or decreasing q will lead to an increase of dependence with default times with respect to the

supermodular and thus to a decrease of equity tranche premiums (and an increase of base correlation).

26When qs = 1, Q
³
p
.|V,Bs
t = 0

´
= 1 − F (t) and Q

³
p
.|V,Bs

t = 1
´
= F (t) which corresponds to the

comonotonic case.
27The probability of these two intervals is equal to zero.
28We simply set νi = F̃

−1
β

³
F̃ρ (ρ̃i)

´
− ρ̃i, i = 1, . . . , n.

29Increasing any non diagonal covariance term in a Gaussian vector with zero mean leads to an increase
of dependence with respect to the supermodular order. We conclude by using the invariance of the super-
modular order under mixing.
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3 State dependent correlation
We are now going to consider some other extensions of the Gaussian copula, belonging to the class of one
factor mean variance Gaussian mixtures. In this case, the latent variables are modelled by:

Vi = mi(V ) + σi(V )V̄i, i = 1, . . . , n (3.1)

where V, V̄i are independent Gaussian random variables. In this approach, default times are conditionally
independent upon V which makes the semi-analytical approach still available (see Laurent & Gregory [2005]).
The latent variables Vi are usually no longer Gaussian which makes calibration onto marginal credit curves a

bit trickier. For simplicity, we consider from now-on that the credit spreads are equal, i.e. F1 = . . . = Fn = F .
We will consider in greater detail two subcases, the random factor loading model introduced by Andersen
& Sidenius [2005] where σi(V ) is constant and the local correlation model of Turc et al [2005], where
σi(V ) =

p
1−mi(V )2.

3.1 local correlation
Turc et al. [2005] introduce a local correlation model, where the correlation is state-dependent. This
approach is appealing since unlike the base correlation, it is associated with a proper model, and the
interpretation and calibration of the local correlation are rather intuitive. However, as in the case of the
marginal compound correlation, local correlation cannot always be calibrated onto arbitrage free CDO

tranche premiums.

The latent variables are given by:

Vi = −ρ(V )V +
p
1− ρ2(V )V̄i, i = 1, . . . , n (3.2)

where ρ is some function of V taking values in [0, 1]. Unless ρ(V ) is constant, Vi is not Gaussian. By
conditioning upon V , we get the marginal distribution of Vi:

H(x) = Q(Vi ≤ x) =
Z
R
Φ

Ã
x+ ρ(v)vp
1− ρ2(v)

!
ϕ(v)dv (3.3)

for x ∈ R, where Φ is the Gaussian cdf, ϕ the Gaussian density function. The default times are obtained
from τ i = F

−1 (H(Vi)) and the conditional default probabilities can be written as:

p
i|V
t = Q(τ i ≤ t | V ) = Φ

Ã
H−1(F (t)) + ρ(V )Vp

1− ρ2(V )

!
. (3.4)

3.2 random factor loadings
The random factor loading model is closely related to the local correlation approach. We briefly recall the
modelling and direct the reader to Andersen & Sidenius [2005] for further details. The simplest form is
associated with the following parametric modelling of latent variables:

Vi = m+ (l1V <e + h1V≥e)V + νV̄i, i = 1, . . . , n (3.5)
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where V, V̄1, . . . , V̄n are independent standard Gaussian variables, l, h, e some input parameters, l, h > 0.
This can be seen a random factor loading model, since the risk exposure l1V <e + h1V≥e is state dependent.
m and ν are such that E [Vi] = 0 and E

£
V 2i
¤
= 1. This leads to m = (l − h)ϕ(e) and:

ν =
¡
1 +m2 − l2 (Φ(e)− eϕ(e))− h2 (eϕ(e) + 1− Φ(e))¢1/2 ,

where Φ is the Gaussian cdf, ϕ the Gaussian density function. The marginal distribution of Vi, that we
denote by HRFL, involves a bivariate Gaussian cdf:

HRFL(x) = Q(Vi ≤ x) = Φ2
µ
x−m√
ν2 + l2

, e,
l√

ν2 + l2

¶
+Φ

µ
x−m√
ν2 + h2

¶
− Φ2

µ
x−m√
ν2 + h2

, e,
h√

ν2 + h2

¶
,

where Φ2(., ., ρ) is the bivariate Gaussian cdf with correlation parameter ρ. The default times are then
defined by τ i = F−1 (HRFL(Vi)), i = 1, . . . , n, where F denotes the marginal distribution of the default
times. The conditional default probabilities can be written as:

p
i|V
t = Q(τ i ≤ t | V ) = Φ

µ
1

ν

¡
H−1RFL(F (t))−m− (l1V≤e + h1V >e)V

¢¶
. (3.6)

The distribution function of the conditional default probabilities is given through:

G(p) = Q(p
i|V
t ≤ p) = Φ

µ
min

µ
z(p)

h
,−e

¶¶
+

µ
Φ

µ
z(p)

l

¶
− Φ(−e)

¶
1z(p)>−el, (3.7)

for 0 < p < 1, where z(p) = νΦ−1(p)−H−1RFL(F (t)) +m. Let us assume that e < 0 and h < l. We can then
write G−1 as:

G−1(u) = Φ
µ
1

ν
× ¡¡1u≤Φ(−e)h+ 1u>Φ(−e)l¢Φ−1(u) +H−1RFL(F (t))−m¢¶ . (3.8)

4 Comparison of stochastic and local correlation

4.1 distribution of conditional default probabilities
To illustrate the previous models, we firstly plot the distribution functions associated with the stochastic
correlation and the random factor loading model (figure 1). As for the stochastic correlation model, the
parameters are respectively qs = 0.14, q = 0.81, ρ2 = 58%. The default probability F (t) = 2.96% is such
that Φ−1(F (t)) = −1.886. As for the random factor loading model, we took l = 85%, h = 5% and e = −2
(see Andersen and Sidenius [2005]) andH−1(F (t)) = −1.886. The graph also shows the distribution function
associated with the independence case.

Using the previous data usually provide reasonable fit to quoted CDO tranches. Let us remark that the
stochastic correlation and random factor loading models are associated with overall rather similar patterns.

However, there is a big discrepancy for the small probability region. The weights put on small probabilities,
and thus on first losses are strikingly different. Though the equity tranches may be priced accordingly in
the two models, it is likely that a first to default swap would be priced quite differently.



4 COMPARISON OF STOCHASTIC AND LOCAL CORRELATION 14

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

independence
stoch+comon
RFL

Figure 1. Distribution functions of conditional default probabilities.

4.2 marginal compound correlation
We show the marginal compound correlation associated with the three parameters stochastic correlation
and random factor loading models, with the same set of parameters as above (figure 2). The recovery rate
is equal to 40%. We see some global similarity between the two models. Looking in greater detail, we
see some difference in the region of first losses, since the marginal compound correlation is much larger
for the stochastic correlation model. This is consistent with the analysis of distribution functions and the
probability mass at 0 in the case of the stochastic correlation model.

The marginal compound correlation exhibit a smile feature, with a rather strong irregularity where the
correlations are much higher. After p = qF (t), there is a sharp increase of the distribution function associated
with the stochastic correlation model, leading to that sharp increase in the marginal compound correlation
after p = (1−δ)qF (t). That shape is not inconsistent with what was observed in the market with compound
correlations on 10 years iTraxx tranches. We notice that we have a zero marginal compound correlation
for p = (1 − δ)F (t). This feature is model independent. For attachment - detachment points above that
threshold, there are two marginal compound correlations. We chose the smallest one consistently with
market practice, which explains the discontinuity in the marginal compound correlations. Of course, both
marginal compound correlations lead to the same value of G, which is the meaningful input.
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Figure 2. Marginal compound correlation associated with stochastic correlation and random factor loading
models

4.3 local correlation
We chose to calibrate the local correlation function ρ onto the distribution of pi|Vt , G, which embeds all
relevant information about loss distributions at time t. Rather than using some arbitrary and possibly
flawed interpolation of market prices or correlations30 , we have firstly fitted some model (either stochastic
correlation or random factor loading), which produces arbitrage free prices and a reasonable fit to market
quotes and in a second step, we consider the associated local correlation. The calibration has been completed
according to Turc et al. [2005]. For self-completeness, we recall and detail the approach. We denote by:

ε(V ) =
H−1(F (t)) + ρ(V )Vp

1− ρ2(V )

and assume that ε is increasing with V . From equation (3.4), we have pi|Vt = Φ (ε(V )). Since pi|Vt = Φ (ε(V )),

for p in [0, 1], G(p) = Q
³
p
i|V
t ≤ p

´
= Φ

¡
ε−1

¡
Φ−1(p)

¢¢
, which leads to ε(v) = Φ−1

¡
G−1 (Φ(v))

¢
for v ∈ R.

We thus need to look for a function ρ such that:

H−1(F (t)) + ρ(v)vp
1− ρ2(v)

= Φ−1
¡
G−1 (Φ(v))

¢
, ∀v ∈ R, (4.9)

with: H(x) =
R
RΦ

µ
x+ρ(v)v√
1−ρ2(v)

¶
ϕ(v)dv. The right-hand term is given while the left-hand term involves ρ

either directly or indirectly through H.

We proceed with a fixed point algorithm, constructing a series of functions ρn converging to a solution of
previous functional equation. We set ρ0(v) = ρ, where ρ is some arbitrary correlation parameter (ρ0 is then

a constant function). We then set H0 such that H0(x) =
R
RΦ

µ
x+ρv√
1−ρ2

¶
ϕ(v)dv, which leads obviously to

30It is well-known that careless smoothing of base correlations leads to negative tranche prices.
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H0 = Φ. We then solve the following equation for all v’s:

Φ−1(F (t)) + ρ1(v)vp
1− ρ21(v)

= Φ−1
¡
G−1 (Φ(v))

¢
. (4.10)

which provides ρ1
31 . H1 is such that H1(x) =

R
RΦ

µ
x+ρ1(v)v√
1−ρ21(v)

¶
ϕ(v)dv. Step n simply involves solving for

ρn(v) in:
H−1n−1(F (t)) + ρn(v)vp

1− ρ2n(v)
= Φ−1

¡
G−1 (Φ(v))

¢
,

and then set Hn such that Hn(x) =
R
RΦ

µ
x+ρn(v)v√
1−ρ2n(v)

¶
ϕ(v)dv. Whenever Hn = Hn−132 , the algorithm has

converged and we set ρ = ρn.

Equation (1.4) can be equivalently written as Φ
−1(F (t))+ρ̄(p)Φ−1(G(p))√

1−ρ̄(p)2 = Φ−1(p). By stating p = G−1(Φ(v)),

we obtain Φ
−1(F (t))+ρ̄(p)v√

1−ρ̄(p)2 = Φ−1
¡
G−1 (Φ(v))

¢
. Comparing with equation (4.10), we get ρ̄(p) = ρ1(v), which

means that local correlation is directly related to the marginal compound correlation of some mezzanine

tranche with an appropriate strike. The previous equation also shows that local correlation shares the same
existence and uniqueness problems as marginal compound correlation.

Let us remark that ε is time dependent due to the terms F (t) and G; thus the calibration of ρ involves a
special maturity choice. There is clearly no guarantee that calibrating on two different time horizons would
lead to the same local correlation.
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Figure 3. Local correlation associated with the random factor loading model

In the random factor loading model, we notice that for low levels of the factor V , ρ(V ) is close to 5%, while

for high levels of V , ρ(V ) is close to 85% consistently with the inputs, as is the case for the discontinuity at
V = 2. When V is in between 1 and 2, there are two local correlations, leading to the same CDO prices.

31The previous equation is quite similar to the one providing the marginal compound correlation. By
squaring up, we obtain a second order algebraic equation, which we solve as usual.
32We only need to check that H−1n (F (t)) = H−1n−1(F (t)).
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Figure 4. Local correlation associated with the stochastic correlation model

In the three parameters stochastic correlation model, for small and large values of V , the local correlation
is equal to 1, corresponding to the existence of a comonotonic state. As in the previous case, we have two
local correlations for values of V approximately between 1 and 2.

Figure 6 below plots the functions H0 and H1 for the stochastic correlation model. It can be seen that
H−10 (F (t)) = H−11 (F (t)). This shows that the algorithm has converged only after one step and that actually,
ρ1 = ρ and H1 = H. We also checked that the function ε was increasing.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

-3 -2 -1 0 1 2 3

H1
H0

Figure 5. Check of convergence of the fixed point algorithm (stochastic correlation model)

In the random factor loading model as well as in the stochastic correlation model, we see that the local
correlation is rather irregular and not unique, casting some doubt about the intuitiveness of the approach.



4 COMPARISON OF STOCHASTIC AND LOCAL CORRELATION 18

4.4 market fits
We now show some recent fits of the three parameter stochastic correlation model to five years iTraxx and
CDX tranche premiums. We took market spreads on the date in question (column two) and assumed a flat
recovery of 40%. The premiums were computed using the semi-analytical technique described above, taking
into account the differences in individual spreads and discounting effects. For simplicity, we provide the
average spread of the index at the time of computation33. We also plot compound correlations (columns
four and five). We can see that the fit is rather good with close agreement on all tranches. Indeed it is
possible to add name specific parameters and fit perfectly although our own view is that this is of limited
value34.

Tranche Market Model Market ρ Model ρ

Index 36

[0-3%] 24% 25% 16% 14%

[3-6%] 83 84 4% 4%

[6-9%] 27 27 12% 12%

[9-12%] 14 14 17% 17%

[12-22%] 9 9 28% 28%

[22-100%] 4 2 63% 56%

Table 2. Fit of model characterised by equation (2.8) to iTraxx market data on 31-August-2005. All values
in bp pa unless otherwise stated. As usual the equity tranche is quoted as an up-front premium, in addition
to the contractual 500 bp pa. qs = 0.13, q = 0.84, ρ2 = 73.5%.

Tranche Market Model Market ρ Model ρ

Index 50

[0-3%] 40% 38% 10% 13%

[3-7%] 126 139 2% 2%

[7-10%] 36 39 12% 13%

[10-15%] 20 17 20% 19%

[15-30%] 10 10 34% 34%

[30-100%] 2 3 59% 65%

Table 3. Fit of model characterised by equation (2.8) to CDX market data on 31-August-2005. All values
in bp pa unless otherwise stated. As usual the equity tranche is quoted as an up-front premium, in addition
to the contractual 500 bp pa. qs = 0.15, q = 0.84, ρ2 = 85.3%.

We now show a fit for the 10-Jun-2005 closer to the crisis earlier in the year. While the market was still in
a rather dislocated state at this point, we still have a good fit of the model to the market. Let us remark

33Detailed data about individual credit spreads and default free rates is available upon request to the

authors
34Unless of course this coincides with our view regarding the idiosyncratic risk of each name.



4 COMPARISON OF STOCHASTIC AND LOCAL CORRELATION 19

that the fitting parameters are related to the premiums of the junior super senior and super senior tranches
(i.e. [12-22%] and [22-100%]). As discussed by Gregory et al. [2005], these two tranches should be closely

related. However, their values have not historically always behaved in this way, perhaps not surprisingly
as the [22-100%] is only valued implicitly. We can improve the fit by adjusting the recovery values (since
the relative values of these tranches are very sensitive to recovery). However, we believe that this is rather
needless and is unrelated to any risk management of recovery risk.

Tranche Market Model Market ρ Model ρ

Index 41

[0-3%] 29% 29% 15% 17%

[3-6%] 109 113 2% 2%

[6-9%] 34 35 10% 10%

[9-12%] 23 21 18% 17%

[12-22%] 15 15 29% 30%

[22-100%] 4 4 62% 61%

Table 4. Fit of model characterised by equation (2.8) to iTraxx market data on 10-June-2005. qs = 0.195,
q = 0.87, ρ2 = 76.5%.

In the case of CDX, the best fit on 10-June-2005 is obtained with ρ2 = 99%. ρ̃i can then only take values 0
and 1. We can check that when ρ2 = 1, the distribution of conditional default probabilities is discrete with

probability masses at 0, qF (t), 1− q + qF (t) and 1.

Tranche Market Model Market ρ Model ρ

Index 57

[0-3%] 45% 44% 11% 13%

[3-7%] 160 191 0% 1%

[7-10%] 41 42 9% 10%

[10-15%] 22 20 17% 16%

[15-30%] 14 14 34% 35%

[30-100%] 5 4 72% 67%

Table 5. Fit of model characterised by equation (2.8) to CDX market data on 10-June-2005. qs = 0.189,
q = 0.89, ρ2 = 99%.

As for the 16-May-2005, the best fit for iTraxx data is obtained with q = 1 (thus, the value of ρ2 is irrelevant).
In this case, ρ̃i can then only take values 0 and 1 and the distribution of conditional default probabilities

is discrete with masses at 0, F (t) and 1. It can be seen that the fit is rather poor for the equity and
junior mezzanine tranches, while the most senior tranches are well priced. We also notice that during this
troubled period, there was some difficulty in finding compound correlations for the [3-6%] iTraxx and [3-7%]
CDX tranches. In this case, we reported a 0% compound correlation. This is consistent with the previous
discussion about the existence of the marginal compound correlation.
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Tranche Market Model Market ρ Model ρ

Index 54

[0-3%] 47% 41% 9% 16%

[3-6%] 150 211 0% 0%

[6-9%] 48 41 7% 6%

[9-12%] 33 35 14% 15%

[12-22%] 24 25 28% 29%

[22-100%] 5 6 56% 62%

Table 6. Fit of model characterised by equation (2.8) to iTraxx market data on 16-May-2005. qs = 0.246,
q = 1.

Tranche Market Model Market ρ Model ρ

Index 76

[0-3%] 62% 56% 6% 13%

[3-7%] 256 390 0% 0%

[7-10%] 56 59 6% 6%

[10-15%] 31 29 14% 14%

[15-30%] 19 20 32% 33%

[30-100%] 2 5 51% 66%

Table 7. Fit of model characterised by equation (2.8) to CDX market data on 16-May-2005. qs = 0.205,
q = 0.90, ρ2 = 99%.

An obvious question to be considered in a model is not only the ability to fit the market but also the stability
of parameters over time. We show in Figure 1 the time series of the calibrated idiosyncratic risk, q, systemic
risk, qs and correlation, ρ2 from the 15th of April 2005 to the 6th of September 2005. We clearly see the

effect of the market dislocation of May returning, which is illustrated by a decrease in both idiosyncratic
and systemic risk. Clearly over this rather volatile period, the parameters are not so stable. However, by
looking at the more recent history we can be a little reassured that this is not so unreasonable. For example,
the iTraxx index level was rather stable in the range 35 to 38 bps from mid-July to end of August and yet
the market tranche premiums (and consequently model parameters) move significantly in this period. It
seems unreasonable to suggest that any model would capture this behaviour with stable parameters.
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Figure 6. Time series of 5Y iTraxx calibrated systemic (qs), idiosyncratic (q) and correlation (ρ2) parameters.
Systemic probability (qs) on right axis.

Conclusion
In this article, we have shown how to adapt the one factor Gaussian copula and analysed some copula skew
approaches to matching the market prices of synthetic CDO tranches.

We show that a simple class of stochastic correlation models can provide a reasonable good fit to the market
at a single maturity. These are quite easy to implement, since the marginal distributions of latent variables

remain Gaussian, and the parameters have intuitive interpretation. Stochastic orders theory is helpful for
risk management purposes. We provided some dynamics of the calibrated parameters, which is a first step
in the risk management process. The cornerstone of the pricing remains the factor copula approach, which
is associated with semi-analytical pricing techniques and easy to use large portfolio approximations. This
we believe is an alternative (or complementary) to the market standard base correlation approach.

It can be seen that distribution functions of conditional default probabilities are unambiguous modelling
inputs, while local correlation suffers from existence and non uniqueness issues. Thus, a local correlation
approach offers some intuition but is ultimately not an obvious way to parametrise of model.

Stochastic and local correlation approaches suffer from global consistency, related to calibration to different
maturities, credit spread dynamics and hedging issues. Such issues may well need to be addressed outside a

copula framework. Before this however, the copula skew approach is a valuable next step in understanding
the pricing and risk management issues of bespoke credit portfolios. Stochastic and local correlation might
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thus either appear as transient and transitional since they do not sever the umbilical cord with the Gaussian
copula and lead towards a mature modelling framework. But they do, we believe, give a useful way in which

to analyse the problems of the correlation skew, move away from base correlation approaches and take the
next step forward in correlation modelling.
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Appendix: distribution of conditional default probabilities
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for 0 ≤ p < 1. 1V≤Kt ≤ p⇔ V > Kt. As a consequence, E [Q (1V≤Kt ≤ p | V )] = Φ(−Kt). Let us assume
that q < 1, ρ > 0. Then, (1− q)Φ
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• if p ≤ qF (t), then Q
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As a consequence, we can write E
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This leads to the stated expression.


