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Abstract

The Value-at-Risk (VaR) is of central importance in modern �nancial risk man-

agement. Of the various methods that exist to compute the VaR, the most popular

are historical simulation, the variance-covariance method, and Monte Carlo (MC)

simulation. While historical simulation is not based on particular assumptions as to

the behaviour of the risk factors, both the variance-covariance method and MC sim-

ulation assume some kind of multinormal distribution of the (relative) risk factors.

Therefore the dependence structure between di�erent risk factors is shown by the

covariance or correlation between these factors.

It is shown in [1, 2] that the concept of correlation entails several pitfalls. As

this might result in an unreliable prediction of the VaR of a �nancial portfolio, new

methods have to be found to avoid these pitfalls. The authors of [1, 2] therefore

propose the use of copulas to quantify risk.

In [3], the method of copulas is introduced. These functions can be used to

describe the dependence between two or more variables with arbitrary marginal dis-

tributions. In rough terms, a copula is a function C : [0; 1]n ! [0; 1] with certain

special properties; thus the joint distribution can be written as

IP(X1 � x1; : : : ; Xn � xn) = C (F1(x1); : : : ; Fn(xn)) ;

where F1; : : : ; Fn denote the cumulated probability functions of the n variables under

consideration. In general, a copula C depends on one or more parameters p1; : : : ; pk

that determine the dependence between the variables x1; : : : ; xn. In this sense, these

parameters assume the role of the correlations.

In this thesis we investigate two market risk factors only, the FX rates USD vs.

DEM and GBP vs. DEM, and use the Gumbel-Hougaard copula [4] to describe their

dependence structure. We present algorithms to estimate the parameter of this copula

and to generate pseudo random numbers due to a copula dependence.

Based on about 2000 items of historical data, we compute the VaR using a copula-

modi�ed MC algorithm. To see the advantage of this method, we compare these

results with VaR results obtained from \traditional" MC simulations and from the

variance-covariance method. On the basis of our backtesting results, we �nd that the

\copula method" is more reliable than the other two methods.
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Chapter 1

Introduction

In modern �nancial risk management, one fundamental quantity of interest is the

Value-at-Risk (VaR). It denotes the amount by which a portfolio of �nancial assets

might fall at the most with a given probability during a particular time horizon. For

the sake of simpli�cation we will only consider time horizons of one day's length in

this thesis. This covers portfolios that include assets that can be sold in one day. The

discussions would have to be modi�ed slightly if one were interested in longer time

horizons.

Typical choices of the probabilities that are connected with VaRs are con�dence

levels of 90%, 95%, and 99%, respectively. If a risk manager is free to choose1, the

particular value he might select will depend on weighing up the reliability that he

expects from the VaR prediction against the amount a VaR should have. Using a

high con�dence level, e.g. 99%, will result in a higher absolute VaR compared with a

90% VaR. If the risk manager compares the predicted VaRs of the portfolio with the

real losses of the following business days over a su�ciently long period of time, he will

observe that about 1% of the real losses exceed the calculated 99% VaRs, assuming

the method the VaR predictions are based on were reliable. However, if he had chosen

a con�dence level of 90%, backtesting of the data would deliver underestimated losses

of 10%.

In statistics, the gap between the con�dence level and 100% is called the quantile

and usually denoted by the Greek letter �. Once the risk manager has chosen a

con�dence level 1��, it is vital that he can trust the predicted VaRs, i.e. that he can

be sure that the fraction of underestimated losses is in fact very close to �. Otherwise,

the larger the di�erence is between the fraction of underestimated losses and �, the

1In some countries the con�dence level to choose is prescribed by law. For example, in the Capital
Adequacy Directive, a con�dence level of 99% is required for internal models.
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less useful the VaR is for managing the risk of the portfolio. Therefore, a reliable

method is needed to extract the VaR.

In literature, several methods to calculate the VaR are known. The most popular

are

� historical simulation,

� the variance-covariance method, and

� Monte Carlo (MC) simulation.

As it is not within the scope of this thesis, we will not explain the �rst two methods.

An excellent description of these and of what we will term \traditional" Monte Carlo

can be found in [5].

We next present general information on how to compute the VaR of a portfolio

using Monte Carlo simulation. The value of the portfolio at present time t will be

denoted by Vt. Let us assume that Vt depends on n risk factors which might be

(relative) interest rates, foreign exchange (FX) rates, share prices, etc. Then a Monte

Carlo computation of the VaR would consist of the following steps:

1. Choose the level of con�dence 1� � to which the VaR refers.

2. Simulate the evolution of the risk factors from time t to time t+1 by generating

n-tupels of pseudo random numbers (PRNs) with an \appropriate" joint distri-

bution that describes the behaviour of the risk factors. The number m of these

n-tupels has to be large enough (typically m = O(1000)) to obtain su�cient

statistics in step 5.

3. Calculate the m di�erent values of the portfolio at time t + 1 using the values

of the simulated n-tupels of the risk factors. Let us denote these values by

Vt+1;1; Vt+1;2; : : : ; Vt+1;m.

4. Calculate the simulated pro�ts and losses, i.e. the di�erences between the sim-

ulated future portfolio values and the present portfolio value, �Vi = Vt+1;i � Vt

for i = 1; : : : ; m.

5. Ignore the fraction of the � worst changes �Vi. The minimum of the remain-

ing �Vi's is then the VaR of the portfolio at time t. It will be denoted by

VaR(�; t; t+ 1).
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As soon as the time evolves from t to t+1, the real value of the (unchanged) port-

folio changes from Vt to Vt+1. With this data at hand, one can backtest VaR(�; t; t+1)

by comparing it with �V = Vt+1 � Vt.

It is obvious that the central point in the above algorithm is step two, the gener-

ation of the PRNs according to the \appropriate" joint distribution. Therefore the

following questions have to be answered:

Question 1 What is the \appropriate" joint distribution of the risk factors under

consideration?

Question 2 Is it possible to simulate PRNs using this joint distribution?

Finding answers to the questions above for two risk factors is the main objective of

this work. For this purpose, this thesis is organized as follows:

In the following chapter, the \traditional" Monte Carlo method is presented. In

chapter 3, copulas are de�ned. Examples of these functions are given, and the basic

properties are summarized. Copulas can be used to describe the dependence structure

between two or more variables. In this sense they replace the concept of covariance

or correlation that is usually used to describe the dependence between variables.

Chapter 4 is concerned with the simultaneous generation of pairs of PRNs whose

dependence structure is determined by a copula.

After the theoretical overview we present in chapter 5 numerical results of a VaR

Monte Carlo simulation based on copulas. The portfolio for which the VaR is calcu-

lated is a�ected by two risk factors only, the FX rates USD/DEM and GBP/DEM.

To test the quality of this method, we backtest our data and compare the results

with numerical data obtained from \traditional" Monte Carlo computations and with

variance-covariance data. Finally, we give a summary and our conclusions in chap-

ter 6.
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Chapter 2

\Traditional" Monte Carlo

Simulation of the Value-at-Risk

In this chapter we want to recall the joint simulation of risk factors which is used

with most Monte Carlo based methods that are used for computing the VaR. In

other words, we want to explain the second step on page 2 in more detail.

As the algorithm we will present next is the one that is most often used in practice,

we will refer to it as the \traditional method". This is to distinguish it from the new

method which will be presented in chapter 4 and which we will call the \copula

method".

Let us brie
y recapitulate the content of the second step mentioned above. It

states that we have to generate n-tupels of PRNs with an \appropriate" joint distri-

bution that describes the behaviour of the risk factors. If one only takes FX rates as

risk factors into account, the \traditional" ansatz to achieve these PRNs consists of

the following steps:

1. Collect historical data of the n FX rates, i.e. n time series spanning N + 1

business days. We denote these data by xi;0; xi;1; : : : ; xi;N for i = 1; : : : ; n,

where today's data are given by the xi;N 's.

A typical choice for N + 1 is, for example, N + 1 = 250.

2. Assuming xi;j 6= 0, compute the relative changes in the data:

ri;j =
xi;j � xi;j�1

xi;j�1
for i = 1; : : : n and j = 1; : : : ; N : (2.1)

For each i = 1; : : : ; n, the ri;1; : : : ; ri;N will be considered as elements belonging

to a random variable ri.
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3. The next step is to make an assumption as to the marginal distributions f1; : : : ; fn

of the random variables r1; : : : ; rn.

As the r1; : : : ; rn originally come from FX rates, the assumption usually made in

�nance at this point is that the fi's are given by normal distributions N(�i; �
2
i ),

fi(ri) =
1p
2��2i

exp

�
�(ri � �i)

2

2�2i

�
(2.2)

for i = 1; : : : ; n. In (2.2), �i and �2i denote the mean and the variance of ri,

�i = IE(ri) ; �2i = IE((ri � �i)
2) : (2.3)

4. Once the marginal distributions have been chosen, one has to determine the

parameters of the distributions.

In the case of normal distributions, this task is easy.1 It is reduced to calculate

the estimators for the means and the variances,

�̂i =
1

N

NX
j=1

ri;j and (2.4)

�̂2i =
1

N � 1

NX
j=1

(ri;j � �̂i)
2 (2.5)

for i = 1; : : : ; n.

5. As stated above, we want to generate n-tupels of PRNs according to a joint

distribution. Therefore we have to make a further assumption, i.e. an assump-

tion that describes the dependence structure of the random variables. As the

marginal distributions have already been chosen, one is, of course, not com-

pletely free to choose the joint distribution. If f(~r) denotes the joint distribu-

tion, one has to ensure that the following condition is true for each i = 1; : : : ; n:

fi(ri) =

Z
1

�1

dr1 : : :

Z
1

�1

dri�1

Z
1

�1

dri+1 : : :

Z
1

�1

drn f(~r) : (2.6)

Let us come back to our \traditional" Monte Carlo simulation. Here one as-

sumes at this point a multinormal distribution,

f(~r) =
1p

(2�)n det C exp

�
�1

2
(~r � ~�) t C�1 (~r � ~�)

�
(2.7)

1\Easy" in the sense that one does not have to �t the data to obtain the parameters.
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where

~r =

0
B@

r1
...
rn

1
CA ; ~� =

0
B@

�1
...
�n

1
CA ; (2.8)

and the normalization conditionZ
1

�1

dr1 : : :

Z
1

�1

drn f(~r) = 1 : (2.9)

In (2.7), C denotes the covariance matrix,

C =

0
BBBBB@

�21 c1;2 c1;3 � � � c1;n
c1;2 �22 c2;3 � � � c2;n

c1;3 c2;3 �23
. . .

...
...

...
. . . . . . cn�1;n

c1;n c2;n � � � cn�1;n �2n

1
CCCCCA ; (2.10)

and ci;j are the covariance between ri and rj,

ci;j = IE ((ri � �i)(rj � �j)) : (2.11)

For the sake of completeness, we introduce the term of correlation at this point.

It is given by

�i;j � ci;j
�i�j

if �i; �j 6= 0 : (2.12)

One can easily show that the function f given by (2.7) ful�ls condition (2.6).

However, we would like to emphasize that the normal marginal distributions

do not enforce the assumption of a joint distribution of the multinormal kind.

This point is essential for understanding the copula ansatz. Furthermore, it was

pointed out in [1, 2] that a dependence structure, which is, like the multinormal

distribution, described by correlation, entails several pitfalls.

6. This step of the algorithm consists of a determination of the covariances (2.11).

In a similar way as the means and variances in step 4 they can be estimated as

follows:

ĉi;j =
1

N � 1

NX
k=1

(ri;k � �̂i) (rj;k � �̂j) : (2.13)

7. As we have chosen a joint distribution (step 5) and have estimated its parameters

(steps 4 and 6) we now have all tools at hand to generate the desired n-tupels

of PRNs. Because this is a standard technical procedure, we present it in detail

in appendix A.3. The relevant steps required are given on page 31, steps (a)
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and (b) for n dimensions, and steps (~a) and (~b) for two dimensions only. Let us

therefore assume at this point that we have generated n-tupels of PRNs. We

denote these numbers by

~rk =

0
B@

rk1
...
rkn

1
CA (2.14)

where k = 1; : : : ; m, and m is the number of Monte Carlo iterations.

8. The previous step provided us with m independent n-tupels of PRNs. How-

ever, these numbers are related to the relative changes in the data, see step 2.

Therefore one �nally has to compute the absolute values of the simulated risk

factors. From (2.1) and (2.14) the m simulated values of the n risk factors at

time step N + 1 are given by

xki;N+1 = xi;N (1 + rki ) (2.15)

where i = 1; : : : ; n and k = 1; : : : ; m.

So far, we have presented the \traditional method" of generating PRNs, assuming

that the joint distribution of the relative risk factors is given by a binormal distribu-

tion, see step 5 and especially equation (2.7). As already mentioned, the assumption

of the binormal distribution is not conclusive. At this point, the ansatz for the

\copula method" comes in. To be able to understand it, we present the basic features

of copulas in the following chapter. Chapter 4 then shows how to replace the steps

5{7 from the algorithm above.
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Chapter 3

Basic Features of Copulas

In this chapter we summarize the basic de�nitions that are necessary to understand

the concept of copulas. We then present the most important properties of copulas

that are needed to understand the usage of copulas in �nance.

We will follow the notation used in [3]. As it would exceed the scope of this thesis,

we do not present the proofs of the theorems cited. At this point we again refer to the

excellent textbook by Nelson [3]. Furthermore, we will restrict ourselves to copulas of

two dimensions only. The generalisation to n dimensions is straightforward and can

also be found in [3].

3.1 De�nition of a Copula

De�nition 1 A two-dimensional copula is a function C : [0; 1]� [0; 1]! [0; 1] with

the following properties:

1. For every u; v 2 [0; 1]:

C(u; 0) = C(0; v) = 0 : (3.1)

2. For every u; v 2 [0; 1]:

C(u; 1) = u and C(1; v) = v : (3.2)

3. For every u1; u2; v1; v2 2 [0; 1] with u1 � u2 and v1 � v2:

C(u2; v2)� C(u2; v1)� C(u1; v2) + C(u1; v1) � 0 : (3.3)

Below we will use the shorthand notation copula for C. As the usage of the name

copula for the function C is not obvious from de�nition 1, it will be explained at the

end of section 3.3.
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Figure 3.1: The Gumbel-Hougaard copula C�(u; v) for � = 2:0.

A function that ful�ls property 1 is also said to be grounded. Property 2 is the

two-dimensional analogue of a nondecreasing one-dimensional function. A function

with this feature is therefore called 2-increasing.

3.2 Examples of Copulas

3.2.1 Gumbel-Hougaard Copulas

The �rst example we want to consider is the Gumbel-Hougaard family of copulas [4].

It is given by the function

C�(u; v) � exp
n
� �(� lnu)� + (� ln v)�

�1=�o
: (3.4)

The parameter � may take all values in the interval [1;1[. In �gure 3.1 we present

the graph of a Gumbel-Hougaard copula for � = 2:0.

A discussion in [3] shows that C� is suited to describe bivariate extreme value

distributions. We will come back to this point later in this thesis on page 25. For

� = 1, expression (3.4) reduces to C1(u; v) = �(u; v), the product copula,

�(u; v) � u v : (3.5)

We will discuss � in the context of random variables in more detail in theorem 4 in

section 3.4.
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For � !1 one �nds for the Gumbel-Hougaard copula C�(u; v)
�!1�! min(u; v) �

M(u; v). It can be shown that M is also a copula. Furthermore, for any given copula

C one has C(u; v) �M(u; v), and M is called the Fr�echet-Hoe�ding upper bound.1

3.2.2 Gaussian Copulas

The second important copula that we want to investigate is the Gaussian or normal

copula [2],

CGauss(u; v) �
Z ��1

1
(u)

�1

dr1

Z ��1
2

(v)

�1

dr2 f(r1; r2) : (3.6)

In (3.6), f denotes the bivariate normal density function, i.e. equation (2.7) for n = 2.

The function �1 in (3.6) refers to the one-dimensional, cumulated normal density

function,

�1(r1) =

Z r1

�1

dr01 f1(r
0

1) ; (3.7)

where f1 is given by equation (2.2). For �2 an analogical expression holds.

If the covariance between r1 and r2 is zero, the Gaussian copula becomes

CGauss(u; v) =

Z ��1
1

(u)

�1

dr1 f1(r1)

Z ��1
2

(v)

�1

dr2 f2(r2)

= u v (3.8)

= �(u; v) if c1;2 = 0 :

As we will see in section 3.4, result (3.8) is a direct consequence of theorem 4.

As �1(r1);�2(r2) 2 [0; 1], one can replace u; v in (3.6) by �1(r1);�2(r2). If one

considers r1; r2 in a probabilistic sense, i.e. r1 and r2 being values of two random

variables R1 and R2, one obtains from (3.6)

CGauss(�1(r1);�2(r2)) = IP(R1 � r1; R2 � r2) : (3.9)

In other words: CGauss(�1(r1);�2(r2)) is the binormal cumulated probability function.

3.3 Sklar's Theorem and Further Important Prop-

erties of Copulas

In this section we focus on the properties of copulas. The theorem we will present

next establishes the continuity of copulas via a Lipschitz condition on [0; 1]� [0; 1]:

1In addition, the two-dimensional function W (u; v) � max(u + v � 1; 0) de�nes a copula with
W (u; v) � C(u; v) for any other copula C. W is called the Fr�echet-Hoe�ding lower bound.
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Theorem 1 Let C be a copula. Then for every u1; u2; v1; v2 2 [0; 1]:

jC(u2; v2)� C(u1; v1)j � ju2 � u1j+ jv2 � v1j : (3.10)

From (3.10) it follows that every copula C is uniformly continuous on its domain.

A further important property of copulas concerns the partial derivatives of a

copula with respect to its variables:

Theorem 2 Let C be a copula. For every u 2 [0; 1], the partial derivative @ C=@ v

exists for almost all2 v 2 [0; 1]. For such u and v one has

0 � @

@ v
C(u; v) � 1 : (3.11)

The analogous statement is true for the partial derivative @ C=@ u.

In addition, the functions u! Cv(u) � @ C(u; v)=@ v and v ! Cu(v) � @ C(u; v)=@ u

are de�ned and nondecreasing almost everywhere on [0,1].

To give an example of this theorem, we consider the partial derivative of the

Gumbel-Hougaard copula (3.4) with respect to u,

C�;u(v) =
@

@ u
C�(u; v) = exp

n
� �(� lnu)� + (� ln v)�

�1=�o�
�
(� lnu)� + (� ln v)�

�
�

��1
�

(� lnu)��1

u
:

(3.12)

In �gure 3.2, C�;u is shown for u = 0:1; 0:2; : : : ; 0:9 and � = 2:0. Note that for u 2 ]0; 1[
and for all � 2 IR where � > 1, C�;u is a strictly increasing function of v. Therefore

the inverse function C�1�;u is well de�ned. However, as one might guess from (3.12),

C�1�;u can not be calculated analytically so that some kind of numerical algorithm has

to be used for this task. As C� is symmetric in u and v, the partial derivative of C�

with respect to v shows an identical behaviour for the same set of parameters.

We now turn to the central theorem in the theory of copulas, Sklar's theorem [6].

To be able to understand it, we recall some terms known from statistics.

De�nition 2 A distribution function is a function F : IR! [0; 1] with the following

properties:

1. F is nondecreasing.

2. F (�1) = 0 and F (+1) = 1.

2The expression \almost all" is used in the sense of the Lebesgue measure.
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Theorem 3 (Sklar's theorem) LetH be a joint distribution function with margins

F1 and F2. Then there exists a copula C with

H(x1; x2) = C(F1(x1); F2(x2)) (3.14)

for every x1; x2 2 IR. If F1 and F2 are continuous, then C is unique. Otherwise, C is

uniquely determined on Range F1� Range F2. On the other hand, if C is a copula

and F1 and F2 are distribution functions, then the function H de�ned by (3.14) is a

joint distribution function with margins F1 and F2.

With Sklar's theorem in mind the use of the name \copula" becomes obvious. It was

chosen by Sklar to describe [7] \a function that links a multidimensional distribution

to its one-dimensional margins" and appeared in mathematical literature for the �rst

time in [6]. Usually, the term \copula" is used in grammar to describe an expression

that links a subject and a predicate. The origin of the word is Latin.

3.4 Copulas and Random Variables

So far we have considered functions of one or two variables. We now turn our attention

to random variables. As brie
y mentioned at the end of section 3.2.2, we will denote

random variables by capital letters and their values by lower case letters. In the

de�nition of a random variable and its distribution function we again follow [3]:

De�nition 4 A random variable R is a quantity whose values are described by a

probability function f(r), where r takes all possible values of R.

Note that it is not stated whether or not the probability function f is known.

De�nition 5 The distribution function of a random variable R is a function F that

assigns all r 2 IR a probability F (r) = IP(R � r). In addition, the joint distribution

function of two random variables R1; R2 is a function H that assigns all r1; r2 2 IR a

probability H(r1; r2) = IP(R1 � r1; R2 � r2).

We want to emphasize that (joint) distribution functions in the sense of de�nition

5 are also (joint) distribution functions in the sense of de�nitions 2 and 3. Therefore

equation (3.14) from Sklar's theorem can be written as

H(r1; r2) = C(F1(r1); F2(r2)) = IP(R1 � r1; R2 � r2) (3.15)

Before we can present the next important property of copulas we �rst have to

introduce the term of independent variables:
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De�nition 6 Two random variables R1 and R2 are independent if and only if the

product of their distribution functions F1 and F2 equals their joint distribution func-

tion H,

H(r1; r2) = F1(r1)F2(r2) for all r1; r2 2 IR : (3.16)

In section 3.2 we have already mentioned the product copula �, see equation (3.5).

The next theorem clari�es the importance of this copula.

Theorem 4 Let R1 and R2 be random variables with continuous distribution func-

tions F1 and F2 and joint distribution function H. From Sklar's theorem we know

that there exists a unique copula CR1R2
with

IP(R1 � r1; R2 � r2) = H(r1; r2) = CR1R2
(F1(r1); F2(r2)) : (3.17)

Then R1 and R2 are independent if and only if CR1R2
= �.

We will end this section with a statement on the behaviour of copulas under

strictly monotone transformations of random variables.

Theorem 5 Let R1 and R2 be random variables with continuous distribution func-

tions and with copula CR1R2
. If �1 and �2 are strictly increasing functions on

Range R1 and Range R2, then C�1(R1)�2(R2) = CR1R2
. In other words: CR1R2

is

invariant under strictly increasing transformations of R1 and R2.
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Chapter 4

Generation of Pseudo Random

Numbers Using Copulas

In the last chapter we presented the de�nition of copulas and their most important

properties, especially Sklar's theorem. We are thus ready to return to the Monte

Carlo simulation of the Value-at-Risk. The strategy, as already outlined at the end

of chapter 2, is to give a general guide on how to generate pairs of PRNs based on

random variables whose dependence structure is de�ned by a copula. This guide will

follow very closely the instructions given in [3]. As the numerical results presented in

the following chapter assume a Gumbel-Hougaard copula, we will discuss this copula

in more detail.

4.1 The General Method

Let us assume that the copula C we are interested in is known, i.e. all parameters

of the copula are known. The task is then to generate pairs (u; v) of observations

of in [0; 1] uniformly distributed random variables U and V whose joint distribution

function is C. To reach this goal we will use the method of conditional distributions.

Let cu denote the conditional distribution function for the random variable V at a

given value u of U ,

cu(v) � IP(V � v; U = u) : (4.1)

From (3.15) we have1

cu(v) = lim
�u!0

C(u+�u; v)� C(u; v)

�u
=

@

@u
C(u; v) = Cu(v) ; (4.2)

1Note that if Funiform denotes the distribution function of a random variable U which is uniformly
distributed in [0; 1], one has Funiform(u) = u.
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where Cu is the partial derivative of the copula. From theorem 2 we know that cu(v)

is nondecreasing and exists for almost all v 2 [0; 1].

For the sake of simplicity, we assume from now on that cu is strictly increasing

and exists for all v 2 [0; 1]. As discussed in section 3.3, this is at least true for the

Gumbel-Hougaard family of copulas. If these conditions are not ful�lled, one has to

replace the term \inverse" in the remaining part of this section by \quasi-inverse"

(see [3] again for details).

With result (4.2) at hand we can now use the method of variable transformation,

which is described in appendix A.1, to generate the desired pair (u; v) of PRNs. The

algorithm consists of the following two steps:

� Generate two independent uniform PRNs u; w 2 [0; 1]. u is already the �rst

number we are looking for.

� Compute the inverse function of cu. In general, it will depend on the parameters

of the copula and on u, which can be seen, in this context, as an additional

parameter of cu. Set v = c�1u (w) to obtain the second PRN.

It may happen that the inverse function cannot be calculated analytically. In this

case one has to use a numerical algorithm to determine v. For example, this situation

occurs when Gumbel-Hougaard copulas are used, as already mentioned in section 3.3.

4.2 Pseudo Random Numbers According to the

Gumbel-Hougaard Copula

In this section we present a detailed example of the application of the \copula method"

in the calculation of the Value-at-Risk. We refer to the algorithm presented in chapter

2 and will use the same notation.

As stated at the end of chapter 2, we want to replace steps 5{7 of the \traditional"

algorithm. On a more abstract level, these steps have the following content:

Step 5: Choose a joint distribution function that describes the dependence structure

of the problem under consideration.

Step 6: Determine the parameter(s) of the joint distribution function from historical

data.

Step 7: Generate n-tupels (or simply pairs) of PRNs according to this distribution.
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Let us �rst turn to step 5 as mentioned on page 5. There we have chosen the

multinormal distribution function to describe the dependence structure. As the nu-

merical results that we will present in the next chapter are based on two risk factors

only, we will only consider the case n = 2 below. We thus have to replace a binormal

distribution function by an alternative dependence structure.

With Sklar's theorem in mind, we now make the following assumption:

Step 5 (\copula method"): The joint distribution function of the two risk factors

is given by a Gumbel-Hougaard copula,

C�(�1(r1);�2(r2)) = IP(R1 � r1; R2 � r2) ; (4.3)

where �i is the cumulated normal density function as given by equation (3.7).

By comparing (4.3) with expression (3.9) it becomes obvious that what we call the

\copula method" actually involves replacing the Gaussian copula in the \traditional

method" by the Gumbel-Hougaard copula.

Next we consider step 6 of the original algorithm. For two risk factors only, it

states how to estimate the covariance (or the correlation, see (2.12)) between these

factors. Note that this is the only parameter that results from the assumption that

the joint distribution is of the binormal kind. From (4.3) it is obvious that the role

of the correlation � � �1;2 in the \traditional method" will be assumed by � in the

\copula method". To estimate � we use the maximum likelihood method [8]:

Step 6 (\copula method"): From the cumulated probability (4.3) we can de�ne

a probability density by calculating the partial derivative of C� with respect to

both parameters,

f�(r1; r2) � @2

@r1 @r2
C�(�1(r1);�2(r2)) : (4.4)

With this result at hand the likelihood function can be computed:

L(�) �
NY
j=1

f�(r1;j; r2;j) : (4.5)

The N pairs (r1;j; r2;j) are again the relative changes of the historical data, see

equation (2.1) in chapter 2.

The maximum likelihood method states that the particular � = �max, at which

L reaches its maximum, is a good estimator of the \real" �. In other words, one
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has to �nd �max so that L(�) < L(�max) for all � 2 [1;1[ with � 6= �max. Here

we assume that the likelihood function contains one unique maximum only. As

this is, of course, not true in general, we will come back to this point later in

this section.

In practice, one does not maximize L directly but the logarithm of L,

l(�) � lnL(�) =
NX
j=1

ln f�(r1;j; r2;j) : (4.6)

From (3.7) and (4.4) one has

l(�) =
NX
j=1

ln

 
@2

@u @v
C�(u; v)

����
u=�1(r1;j);v=�2(r2;j)

f1(r1;j) f2(r2;j)

!
: (4.7)

Further simpli�cation gives

l(�) =
NX
j=1

ln

 
@2

@u @v
C�(u; v)

����
u=�1(r1;j);v=�2(r2;j)

!
+

NX
j=1

(ln f1(r1;j) + ln f2(r2;j)) :

(4.8)

The second sum in (4.8) does not depend on theta. Therefore it is su�cient to

maximize the function

l̂(�) =
NX
j=1

ln

 
@2

@u @v
C�(u; v)

����
u=�1(r1;j );v=�2(r2;j)

!
(4.9)

with respect to �. While the partial derivative in (4.9) can be calculated ana-

lytically from (3.12), there is no exact analytic expression to compute the values

of the cumulated normal density functions �i(ri;j) for i = 1; 2 and j = 1; : : : ; N .

For this task we used the approximation method presented in [9]. As stated

above, the maximization of l̂(�) �nally yields the desired value of �.

In general, the maximization of l̂(�) has to be done numerically. For an arbitrary

historical date2 we present in �gure 4.1 a typical curve of l̂(�). As one can see, only

one global maximum occurs in that �gure. In particular, no local maxima can be

seen. This behaviour was observed by us at all historical dates that we have tested.

Therefore we conclude that the maximization algorithm that we have used to �nd �

is numerically stable and reliable.

2We have chosen 01/06/1995 as the relevant date plus the preceding 249 business days.
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Figure 4.1: The modi�ed likelihood function l̂(�) vs. �.

Let us now come to step 7 of the original algorithm. Instead of creating pairs

of correlated PRNs that belong to binormal distributed random variables we now

have to generate PRNs that obey the copula dependence structure that was chosen

in (4.3) with the parameter �max. Using the results from section 4.1, step 7 can now

be reformulated:

Step 7 (\copula method"): First, generate two independent, in [0; 1] uniformly

distributed PRNs u; w. Compute v = C�1�max;u
(w), where C�max;u is given by

equation (3.12). Finally determine r1 = ��11 (u) and r2 = ��12 (v) to obtain one

pair (r1; r2) of PRN with the desired copula dependence structure.

Let us end this chapter with two remarks on the last step. As already discussed in

section 3.3, the determination of C�1�max;u
(w) is no problem from a numerical point of

view. Secondly, we also realized the computation of ��11 (u) and ��12 (v) numerically

to obtain the results which are presented in following chapter.
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Chapter 5

Numerical Results

As already mentioned in the previous chapters, we considered just two risk fac-

tors in our numerical simulations. These factors are the FX rates USD/DEM and

GBP/DEM, respectively. To see how the \copula method" works and to demon-

strates its bene�ts it is not necessary to use a complicated portfolio. The VaR results

that we will discuss below are therefore based on a simple linear portfolio. Its value

is given by

V = 1� USD� 1�GBP : (5.1)

As we are interested in the value of V given in DEM, we can say that the portfolio

contains the risk factors directly.

The data on which our investigation is based are the historical FX rates ranging

from 2 Jan. 1991 until 9 Mar. 20001. Due to the introduction of the euro in the EU,

we used the �xed rate EUR/DEM = 1.95583 to convert the EUR based FX rates

from 4 Jan. 1999 until 9 Mar. 2000 into DEM-based FX rates.

The time interval on which our VaR computations are based are 250 business days.

Using the notation given in step 1 on page 4, we used N + 1 = 250 to obtain our

results. To get an impression of the analysed data we show in �gure 5.1 the means

of the relative FX rates (see expression (2.1)) over these 250 business days.

Let us now start our comparison of the \traditional method" vs. the \copula

method" of calculating the Value-at-Risk. First, we want to take a look at the two

di�erent parameters of the underlying joint distributions, i.e. the correlation � = �1;2

of the binormal distribution and the parameter �max of the Gumbel-Hougaard copula.

To simplify the notation, we will skip the su�x \max" in the remainder of this thesis.

The behaviour of these parameters is presented in �gure 5.2. As already mentioned

1The latter date simply is the date when we started our investigation.
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in the previous chapters, the theoretical values that these parameters may take are

� 2 [�1;+1] and � 2 [1;1[, respectively.

First, a comparison of the two parameters shows that both curves behave in a very

similar manner on a qualitative level. However, even if it is most often the case, an

increase or decrease in one of the parameters does not necessarily result in an increase

or decrease in the other.

Our second point is that both curves tend in the same region to signi�cant minima,

� ! 0 and � ! 1. Signi�cant in this context means that, as stated on page 9 in

section 3.2.1 and in theorem 4, for the Gumbel-Hougaard copula, � = 1 is equivalent

to independence of the two risk factors. On the other hand, for the \traditional

method", � = 0 is equivalent to independence2. This shows that both methods

interpret the data correctly in qualitative terms.

However, in �nance we are interested in quantitatively correct statements. Espe-

cially in the case of risk management, we want to compute a Value-at-Risk that best

re
ects reality. The message of this thesis is that for the example under consideration,

which is de�ned by portfolio (5.1), the \copula method" provides more reliable results

than the results obtained from the \traditional method". To con�rm this statement

we calculated the VaR in the time interval from 2 Jan. 19923 to 8 Mar. 20004. For

each business day in this interval we calculated three di�erent VaRs, corresponding

to con�dence levels (or quantiles) of 90% (or �1 = 10%), 95% (or �2 = 5%), and 99%

(or �3 = 1%), respectively. Each of these VaR(�i; t; t + 1) was compared with the

change in the value of the portfolio from time t to time t+1, i.e. with �V = Vt+1�Vt.
The numbers of underestimated losses in relation to the total number of backtested

values gave three values that could be compared with the three quantiles �1, �2, and

�3. To test the dependence of these numerical results on the number of Monte Carlo

steps, we did this investigation for various numbers of MC steps ranging from 100 to

1500. In table 5.1 and �gure 5.3 we present our results of the underestimated losses.

First, we wish to emphasize that, once a number of MC steps of about 900 is

reached, the data do not change signi�cantly under any additional increase of the

number of MC steps. This behaviour can be observed for both algorithms and each

con�dence level, as one can see from table 5.1. Therefore the numerical results for

2In general, a correlation of zero does not imply independence. However, for the multinormal
distribution ci;j = 0 for all i; j implies independence of the variables as the distribution function
(2.7) factorizes.

3On page 20 we give 2 Jan. 1991 as the start date of our investigations. However, to calculate a
VaR one has to collect historical data (see step 1 on page 4) and our calculations are based on 250
business days.

4We use the �nal day (9 Mar. 2000) of our investigation for backtesting only.
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Percentage of underestimated losses

Traditional Monte Carlo Copula Monte Carlo

# MC-steps �1 = 10% �2 = 5% �3 = 1% �1 = 10% �2 = 5% �3 = 1%

100 8:44% 4:61% 1:60% 8:69% 5:24% 1:94%
200 8:05% 4:42% 1:50% 8:54% 5:00% 1:50%
300 8:25% 4:42% 1:41% 8:35% 4:80% 1:50%
400 8:05% 4:37% 1:31% 8:10% 4:46% 1:26%
500 7:81% 4:32% 1:36% 8:05% 4:61% 1:26%
600 7:76% 4:37% 1:26% 8:15% 4:66% 1:26%
700 7:71% 4:32% 1:36% 8:20% 4:66% 1:31%
800 7:76% 4:37% 1:31% 8:25% 4:71% 1:26%
900 7:76% 4:37% 1:41% 8:25% 4:90% 1:21%
1000 7:86% 4:46% 1:41% 8:25% 4:85% 1:31%
1100 7:81% 4:42% 1:31% 8:30% 4:85% 1:21%
1200 7:81% 4:42% 1:31% 8:25% 4:95% 1:26%
1300 7:81% 4:32% 1:26% 8:10% 4:95% 1:26%
1400 7:81% 4:37% 1:31% 8:15% 4:85% 1:21%
1500 7:76% 4:42% 1:31% 8:15% 4:80% 1:26%

Table 5.1: Backtesting results of the \traditional method" and the \copula method"
for quantiles �1 = 10%, �2 = 5%, and �3 = 1%, and various numbers of MC steps.
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Figure 5.3: Backtesting results of the \traditional method" (left) and the \copula
method" (right) for quantiles �1 = 10% (green squares), �2 = 5% (red triangles), and
�3 = 1% (blue circles), and various numbers of MC steps.
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numbers of MC steps of O(1000) seem to be reliable and are therefore suited as a

basis for a discussion and comparison of the two methods.

Secondly, and this is the most important point that we wish to emphasize, the

backtesting results show that the \copula method" works better then the \traditional

method" for each con�dence level. As mentioned previously, \better" in this context

means that the absolute deviation of the percentage of the backtesting failure from

the quantiles �i is smaller in the case of the \copula method" than in the case of the

\traditional method" for each i = 1; 2; 3.

To quantify the last statement, we consider below the results that we obtained

from the simulations using 1500 Monte Carlo steps. For the 10% quantile, we ob-

tained percentages of backtesting failures of 7.76% in the case of the \traditional

method" and of 8.15% for the \copula method". In other words, the deviation from

the theoretical result is about 21% higher in the \traditional" case. For the 5% and

1% quantiles we also found that the results obtained from the \copula method" are

more reliable than those obtained from the \traditional method". The numerical val-

ues that we obtained from our simulations show deviations of 0:58% (traditional) and

0:20% (copula) from the 5% quantile, and 0:31% (traditional) and 0:26% (copula)

from the 1% quantile. A comparison of these results shows that the deviations from

the theoretical results are about 3 times higher for the \traditional method" than for

the \copula method" in the case of the 5% quantile and about 19% higher in the case

of the 1% quantile.

Even though we do not explain the variance-covariance method for calculating

the VaR in this thesis (see, for example, [5]), we still want to compare our numerical

results with the analytical results obtained using this method. For the three quantiles,

we measured percentages of backtesting failures of 7.76%, 4.37%, and 1.36%. These

results are also less reliable than the results from the \copula method". In particular,

the variance-covariance results are very close to the \traditional" results. This can

be seen as a kind of consistence check of the algorithm of the \traditional method"

as, in the case of a portfolio which is a linear combination of the risk factors (see

equation (5.1)), the variance-covariance VaR is the limit of the \traditional" Monte

Carlo VaR for an in�nite number of MC steps.

We now focus on the interpretation of our results. As discussed in detail in the

previous chapters, the only di�erence between both methods is due to the di�erent

dependence structures that underlie the methods. As a consequence, the pseudo

random numbers that are generated in the Monte Carlo simulations (see step 7 of

each algorithm, pages 6 and 19) show a di�erent behaviour for each of the methods,
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Figure 5.4: 1500 pairs of pseudo random numbers, generated by using a binormal
distribution with � = 0:769 (left) and a Gumbel-Hougaard Copula dependence with
� = 2:208 (right).

even if the historical data the simulations are based on are the same. Inspired by [1],

we present in �gure 5.4 1500 pairs of PRNs that have been generated at an arbitrary

historical date (see footnote 2 on page 18) using to both methods. The PRNs that

have been generated by using the binormal distribution yield a �gure that resembles

an ellipsoid. This behaviour is well known in statistics and can therefore be used

as additional evidence that our numerical Monte Carlo algorithm works �ne in the

\traditional" case.

Let us now turn to the right part of �gure 5.4. It shows that the use of the Gumbel-

Hougaard copula results in more extreme values in the sense that, if one PRN is

already in the tail of its marginal distribution, the probability that the corresponding

second PRN will also be in its tail is higher than in the \traditional method". In

other words, \there is less \diversi�cation" of large risk in the Gumbel dependence

model" [2]. On the other hand it is clear (see step 5 on page 2) that the accuracy of a

Monte Carlo VaR is dominated by the �most extreme simulated losses of the portfolio

under investigation. However, in our case of a linear portfolio, these losses are directly

related to the values of the simulated pairs of PRNs. From this and from the fact

that the backtesting results obtained from the \copula method" are more reliable

than those obtained using the \traditional method" we conclude that the dependence

structure given by the Gumbel-Hougaard copula better describes the dependence
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between the USD/DEM and GBP/DEM rates than a binormal distribution based on

the concept of correlation.
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Chapter 6

Summary and Conclusions

In this thesis we have demonstrated an alternative method to compute the Value-

at-Risk of a �nancial portfolio. For this purpose, we have introduced the concept

of copulas and presented the most important properties of these functions. For the

sake of simplicity, we have restricted ourselves to two risk factors and therefore to

two-dimensional copulas only. We have discussed one representative of the copula

family in detail, the Gumbel-Hougaard copula. Using this tool, we have modi�ed

one basic assumption underlying the common method of computing the VaR using

Monte Carlo techniques: usually, the dependence structure between two risk factors

is assumed to be described by the correlation between these factors. Especially,

the joint distribution is assumed to be of the binormal kind. We have replaced

this dependence structure by a dependence structure that is de�ned by the Gumbel-

Hougaard copula. In doing so, we have replaced the role of the correlation by the

parameter that determines the behaviour of a Gumbel-Hougaard copula.

To test whether the copula ansatz improves the computation of the VaR, we have

considered a simple linear portfolio which consists of the two FX rates USD/DEM

and GBP/DEM, respectively. Assuming con�dence levels of 90%, 95%, and 99%, we

have calculated the VaRs for this portfolio on the basis of 250 banking days, using

three di�erent methods:

� \traditional" Monte Carlo simulation

� the variance-covariance method

� \copula" Monte Carlo simulation

The computations and the corresponding backtesting of the results have been per-

formed on the basis of historical FX rates ranging over more than nine years. This

means that our backtesting statistics are based on approximately 2000 measurements.
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The results that we have obtained in this thesis show that, at least for the portfolio

under consideration, the \copula method" is more reliable than both the \traditional"

Monte Carlo method and the variance-covariance method. In other words, for each

con�dence level the absolute deviations of the percentages of the backtesting failures

from the quantiles are smaller in the case of the \copula method" than both in the

case of the \traditional method" and in the case of the variance-covariance method.

With these results at hand we now want to formulate the answers to the two

questions that were asked in the introduction. Question 1 asked for the \appropriate"

joint distribution of the risk factors. Based on our numerical data the answer has to be

that a binormal distribution describes the data well, but that a dependence structure

de�ned by the Gumbel-Hougaard copula describes the data better. The content of

question 2 was of a more technical nature. It concerned a possibility of simulating

pseudo random numbers using this joint distribution. We have given an answer to this

question in chapter 4. There we have discussed in general how to generate PRNs using

a copula dependence structure. Furthermore, we have given detailed information on

what an algorithm looks like in the case of the Gumbel-Hougaard copula.

We �nally want to consider the application of copulas in �nancial risk manage-

ment. In this thesis it has been shown that the use of copulas may improve the

computation of the VaR of a �nancial portfolio. As we considered two risk factors

only, a natural extension of studies in this �eld would have to include three or more

risk factors. Furthermore, there is a large number of other copulas [3] some of which

also may be suited for use in a VaR computation. Finally one could make use of the

fact that the dependence structure between the risk factors can be described by a

copula. As a consequence, one is completely free in choosing the marginal distribu-

tions of the risk factors. Especially, di�erent marginal distributions may be chosen

for each risk factor. The replacement of the normal marginal distributions that also

have been used in this thesis by a suitable selection of alternative marginal distri-

butions may provide an additional improvement of the VaR computation. By this

replacement, the typical problem of the heavy tails [5] of the historical data, which

are not described in a satisfactory way by a normal distribution, may be weakened.
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Appendix A

Generation of Pseudo Random

Numbers

In this appendix we deal with the generation of pseudo random numbers that are

distributed according to normal and multivariate normal distributions.

As almost every computer language provides independent PRNs that are uni-

formly distributed in the [0; 1] interval we do not describe how to generate these

numbers. The interested reader may �nd several algorithms describing this topic in

any good text book on numerical statistics (see, for example, [8]).

A.1 Transformation of Variables

A general method to generate PRNs according to a given distribution uses a trans-

formation of variables to obtain these numbers from uniformly distributed PRNs.

Starting with a uniformly distributed PRN u 2 [0; 1] we want to generate a PRN

r = r(u) with a given distribution f(r),Z b

a

dr f(r) = 1 : (A.1)

First one equalizes the integrated probability density to u,

IP(r) =

Z r

a

dr0 f(r0) = u : (A.2)

If possible, one next has to invert the function IP. Then

r(u) = IP�1(u) (A.3)

is the PRN with the desired distribution. However, it is not always possible to com-

pute (A.3) analytically. Especially normally distributed PRNs cannot be computed

directly by the method described above.
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A.2 The Box-Muller Method

To generate normally distributed PRNs one cannot directly apply the method de-

scribed in the previous section. Below, we shortly summarize what is known in litera-

ture as the Box-Muller method. This refers to an algorithm which is used to generate

simultaneously two independent normally distributed PRNs from two independent

uniformly distributed PRNs.

Assume that we want to generate r1 from a N(�1; �
2
1) distribution and r2 from a

N(�2; �
2
2) distribution

1. If we denote the two uniformly distributed PRNs by u1 and

u2, the introduction of polar coordinates, followed by a variable transformation as in

A.1, shows (see [8] for details) that r1 and r2 are given by

r1 =
q
�2�21 lnu1 sin(2� u2) + �1 and (A.4)

r2 =
q
�2�22 lnu1 cos(2� u2) + �2 : (A.5)

A.3 Generation of Multivariate Normally Distri-

buted Pseudo Random Numbers

Below we will discuss how to generate a multivariate normal distribution of n corre-

lated PRNs represented by a vector ~r. The density function we have to consider is

presented in equation (2.7).

The basic idea behind generating the desired PRNs is to apply what is called

Cholesky decomposition [10] to the inverse covariance matrix. The ansatz of this

decomposition is

C�1 = AtA ; (A.6)

where C is given by (2.10). The matrix A in (A.6) is a lower triangular matrix,

A =

0
BBB@

�1;1 0 � � � 0

�2;1 �2;2
. . .

...
...

...
. . . 0

�n;1 �n;2 � � � �n;n

1
CCCA : (A.7)

Using (A.6) one now performs a linear variable transformation in (2.7),

~r! ~s = A (~r � ~�) : (A.8)

1See equation (2.2) on page 5 for the density function N(�i; �
2
i ) of a normal distribution.
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One can show that the corresponding determinant of the Jacobian matrix is given by

@(r1; : : : ; rn)

@(s1; : : : ; sn)
=
p
det C : (A.9)

Therefore, the transformed density function takes the form

f(~s) =
1p
(2�)n

exp

�
�1

2
~s t ~s

�
=

nY
i=1

1p
2�

exp

�
�1

2
s2i

�
: (A.10)

Equation (A.10) is the density function of n uncorrelated, standard normally dis-

tributed variables. Therefore the simultaneous generation of n correlated, normally

distributed PRNs is achieved in two steps:

(a) Generate n uncorrelated, standard normally distributed PRNs s1; : : : ; sn using

the Box-Muller method presented in section A.2.

(b) Compute the desired PRNs r1; : : : ; rn by the reverse transformation of (A.8),

~s! ~r = A�1~s+ ~� : (A.11)

As we only need the two-dimensional case in this thesis, we will now focus on

the generation of bivariate normally distributed PRNs. The n-dimensional case is a

simple generalisation and can be found, for example, in [5].

The �rst step is (see equations (A.4) and (A.5)):

(~a) Generate two uncorrelated, standard normally distributed PRNs

s1 =
p
�2 lnu1 sin(2� u2) and (A.12)

s2 =
p
�2 lnu1 cos(2� u2) (A.13)

from two uncorrelated PRNs u1 and u2 that are uniformly distributed in [0; 1].

From (2.10), (A.7) and condition (A.6) one can show that A can be written as

A =
1p
det C

�
�2
p
1� �2 0

�� �2 �1

�
(A.14)

where det C = �21�
2
2 (1 � �2) and � denotes the correlation coe�cient (see (2.12)),

� = �1;2 = c1;2=(�1�2). The correlation is normalized so it can take all values in

the interval [�1; 1]. For � = �1 expression (A.14) is not de�ned. However, in this

section we can neglect these cases as � = �1 means that the variables r1 and r2 are

completely positively or negatively correlated. Therefore one only has to simulate

one PRN using to the method described in section A.2. The second PRN will be

deterministic.

From (A.11) and (A.14) one �nds that the second step mentioned above becomes:
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(~b) Perform the variable transformation s1; s2 ! r1; r2 as follows:

r1 = �1 s1 + �1 and (A.15)

r2 = �2 (� s1 +
p
1� �2 s2) + �2 : (A.16)

r1 and r2 are the two desired, correlated PRNs that obey a bivariate normal

distribution.
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