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Abstract

Banks calculating capital requirements for credit risk based on internal ratings
according to the Basel framework must add a margin of conservatism to their esti-
mates of probability of default (PD). This margin shall, at a minimum, cover the
statistical uncertainty related to the estimation. A wide range of methods and as-
sumptions are regularly used to quantify this uncertainty and these methods and
assumptions are frequently challenged and criticized by supervisory authorities. In
this article we show why one should distinguish between two different types of statis-
tical uncertainty in PD estimation and between two different approaches to quantify
them. We derive formulas for both types and approaches from the credit-portfolio-
model assumptions which underlie the Basel risk weight formulas. By a numerical
evaluation and simulation we find that, depending on the portfolio and availability
of historical data, both types can yield sizeable contributions to the overall uncer-
tainty of a PD estimate. Consequently we discuss the impact of these findings on
capital requirements.
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the basis of information given herein is made exclusively on own risk.

1



1 Introduction

In the internal ratings-based (IRB) approach to calculate capital requirements for credit
risk, banks calibrate their probability of default (PD) models in a through-the-cycle
(TTC) manner. The target level of calibration for a rating grade or calibration segment
is its long-run average of default rates. For banks in the European Union, the European
Banking Authority (EBA) has issued Guidelines [EBA, 2017] which, inter alia, prescribe
a way to calculate this long-run average from historical default data and also demand
for the estimation of a Margin of Conservatism (MoC) reflecting uncertainties in this
calculation.

While banks use various approaches for this estimation of MoC, these approaches are
currently under intense scrutiny in internal-model inspections by European supervisory
authorities and are a frequent source of criticism in these inspections. Therefore it is
important for banks to have a clear understanding of the sources of uncertainties in their
PD quantification and of their respective importance. In art. 36 and 42 of [EBA, 2017],
EBA defines three categories of MoC:

� MoC related to data and methodological deficiencies (category A);

� MoC related to relevant changes in underwriting standards, risk appetite, collection
and recovery policies and to any other source of additional uncertainty (category
B);

� MoC related to the general estimation error (category C).

In this article we study the rather generic category C, covering the unavoidable statistical
uncertainty present in any PD estimation, where the individual data and representative-
ness issues of a particular bank do not play a role.

Past experience of the authors in IRB modelling projects at various banks shows that
in practice often a one-dimensional approach is chosen to quantify statistical uncertainty
of PD, i.e. methods assessing only one source of uncertainty. This source is then, although
it is often not stated explicitly, either the finite number of borrowers in the samples from
which PD is estimated or the finite length of the data history used for the estimation.
In the first case correlations between borrower defaults are often ignored while in the
second case they are essential, driving the variations of the observed default rates over
time.

In this article we show that both are relevant sources of uncertainty and discuss
how to distinguish between them. We address the question of how both can be quanti-
fied consistently, exploiting the model assumptions which underlie the Basel risk-weight
formulas, taking into account a macroeconomically-driven correlation between borrower
defaults. By a numerical evaluation and simulation we find that, depending on the
number of borrowers and the importance of the correlation in the portfolio under con-
sideration, both types can yield sizeable contributions to the overall uncertainty of PD
and consequently on banks’ capital requirements. However we conclude that, while from
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a purely mathematical point of view the case is clear, further guidance is needed con-
cerning the regulatory relevance of the second type of uncertainty for MoC C under the
IRB regulations.

2 Materials and Methods

2.1 Regulatory statements on the PD estimation method

Under European IRB regulations there are no predefined methods to calculate the gen-
eral estimation error of a risk parameter. Art. 43 (b) of [EBA, 2017] states that the MoC
of category C should ”reflect the dispersion of the statistical estimator”. This estimator
is, in the case of a through-the-cycle PD estimation for the IRB approach, the average of
observed annual default rates over a multi-year period containing economically ”good”
and ”bad” years.

In this article we use the term long-run average default rate of a rating grade or
portfolio segment for this random quantity, which under the IRB approach is defined
over a fixed period in time t = 1, .., T , and denote it with RL:

RL =
1

T

T∑
t=1

RD(t). (1)

RD(t) are the (obviously random) annual default rates of the grade or segment in the
time window chosen for the estimation. According to art. 82 of [EBA, 2017] this time
window should end at the date of the most recent available portfolio snapshot for which
an annual default rate can be calculated and its length should be chosen in such a way
that it reflects the ”likely range of variability of default rates”. The observed value of
RL, calculated from the observed default rates rD(t) is denoted as

rL =
1

T

T∑
t=1

rD(t). (2)

In practice we usually have one single observation rL per grade or segment and cannot
repeat this random experiment. This observation is then the estimate for the PD of the
grade or segment.

It is crucial to keep in mind that, from a mathematical point of view, we are es-
timating a hidden (unobservable) borrower property ”TTC PD”, using an average of
past default rates as an estimator. The resulting estimate is then used to calibrate the
prediction model providing the risk differentiation between borrowers to the desired level
of risk. Since this model is applied to predict future default risk this procedure implies
that the borrower property ”TTC PD” is implicitly assumed to be constant in time.

2.2 Definition and sources of statistical uncertainty in PD

In line with the point of view formulated by the European Central Bank (ECB) in
paragraph 140 of [ECB, 2019], we define the statistical uncertainty of the risk parameter
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PD as the uncertainty which can be quantified via the distribution of its estimator, and
which is driven mainly by the size of the sample on which the estimation is performed
(i.e. the number of borrowers and the number of defaults per snapshot) and the length
of the timeframe (i.e. the number of snapshots) during which the sample is observed.

Our approach to quantify this statistical uncertainty is to calculate a confidence
interval via the distribution of the estimator. The shape of the distribution must be
derived from some theoretical assumptions. For the sake of transparency and focus we
restrict ourselves, for any analytical calculations, to the simple and well-known Wald
confidence interval which implies approximating the binomial distribution of default
events by a normal distribution, although this interval is known to have shortcomings in
case of a low number of borrowers and default probabilities close to 0 or 1 [Brown et al.,
2001]. In the simplest case, which is under the theoretical assumption of uncorrelated
defaults, this interval at confidence level 1−α can be calculated with a classical textbook
formula for a grade or segment of N borrowers:

Ru,l
D,α = rD ± Φ−1

(
1− α

2

)
·
√

rD · (1− rD)

N
. (3)

for the upper bound Ru
D,α and the lower bound Rl

D,α of the interval at any point in time
t. Note that there is no time dependence in this formula because given the assumption
of uncorrelated defaults one usually also assumes that there is no significant variation of
default rates over time if N is sufficiently large.

These assumptions are, however, in conflict with historical experience and also with
the basic assumption behind the IRB risk-weight formulas, i.e. that all borrowers are
subject to a systematic risk factor, leading to macro-economically driven variations of
their default rates over time. This means that the estimator RL is a linear combination
of estimators RD(t) for the PDs of borrowers under different macroeconomic conditions.
These estimators carry different statistical uncertainties. Hence, one question to be
answered in this article is:

1. How can these different uncertainties be combined in a way consistent with the
assumptions of the IRB approach?

The second question in the focus of our work is:

2. Does the selection of the reference dates t contribute to the statistical uncertainty
of PD estimation and, if yes, how can we quantify this type of uncertainty in a
way consistent with the IRB assumptions?

In the following, we will address these questions in the framework of the Asymptotic
Single Risk Factor (ASRF) model [BCBS, 2005], also known as Vasicek model [Vašiček,
2002], which the regulators have chosen as the mathematical foundation of IRB capital
requirements. However, despite the model being ”asymptotic” in the sense of maximizing
portfolio granularity, we will allow the number of borrowers in a portfolio to be a finite
number N to be able to discuss the following two kinds of statistical uncertainty that
exist when PD is estimated from historical data:
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1. Uncertainty due to the limited sample size N(t) in historical portfolio snapshots:
This uncertainty is expected to decrease with increasing N(t) and increasing num-
ber of snapshots T ;

2. Uncertainty from the choice of the timeframe: It is uncertain how close the
average annual default rate in a randomly chosen timeframe t = 1, .., T is to the
”true” TTC PD. This uncertainty is expected to decrease with increasing T , but
is not expected to vanish even for an infinitely large portfolio.

These two types of uncertainties have also been identified in [Garcia-Cespedes and
Moreno, 2016], however with a focus on the uncertainty in the tail of the portfolio
loss distribution, while we focus on the uncertainty of the PD itself.

The two types of uncertainties are directly related to the two questions defined above.
As we will see in section 3.1, the first type of uncertainty can be quantified independently
for each t in the ASRF model via the conditional variance of RD, i.e. given a certain
macroeconomic situation, and then aggregated to calculate the uncertainty of the long-
run average default rate.

Considering the second type of uncertainty, there are two possible ways to deal with
it:

� Consider the choice of the timeframe t = 1, .., T as random sampling. In this case,
it contributes to the overall uncertainty and can be quantified in the ASRF model
together with the first type of uncertainty through a calculation of total variance,
see section 3.2.

� Consider the timeframe t = 1, .., T as given, as there are regulatory prescriptions
for this choice and a bank has to prove that this timeframe covers a sufficient
amount of good and bad years. In this case, there is only uncertainty conditional
on the known states of the economy at t such that statistical uncertainty is fully
covered by the first type mentioned above.

While from a mathematical point of view both types clearly exist, the relevance of the
second type for the regulatory Margin of Conservatism in the IRB approach is in our
opinion not clarified yet and will be a debate between banks and their regulators.

To conclude the section on materials and methods, the following subsection gives
a brief introduction to the ASRF model assumptions before we exploit this model to
calculate statistical uncertainties of PDs. We will derive analytical formulas for the
two types of uncertainties in sections 3.1 and 3.2. In section 4 we study the numerical
relevance of the uncertainties in various situations.

2.3 Framework: The ASRF model

We model borrower defaults by Bernoulli variables di(t) with i = 1, 2, . . . , N(t). For sim-
plicity we will assume non-overlapping 12-month periods after each t for the observation
of defaults. In the following, we briefly introduce the ASRF model framework.
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Assume a granular and homogeneous portfolio where the idiosyncratic probability
of default of any borrower is p. Each borrower’s asset value is assumed to follow a
geometric Brownian motion. At time t it can be written as a function of the standard
normal random variable

ai(t) =
√
ρϵ(t) +

√
1− ρxi(t) (4)

with the asset correlation parameter ρ. The random variables

xi(t) ∼ N (0, 1) , ϵ(t) ∼ N (0, 1) (5)

are standard-normally distributed and uncorrelated with one another. Any correlation
of borrowers beyond the dependence on a common systematic factor is neglected in
this model. For a discussion of the consequences of a more explicit type of correlation,
see [Miao and Gastwirth, 2004]. Moreover, the time series of xi(t) and ϵ(t) are assumed
to contain no autocorrelation. The systematic factor ϵ(t) influences all borrowers’ asset
values while xi(t) is an idiosyncratic risk factor for borrower i. Intuitively, a high value
of ϵ(t) corresponds to a ”good” state of the economy while a low (negative) value is the
opposite.1

A borrower is assumed to default when his asset value falls below his contractual
obligations. This can be expressed by a default threshold for the variable ai(t):

di(t) =

{
1 if ai(t) ≤ Φ−1(p)

0 otherwise
(6)

where Φ−1 is the inverse cumulative standard normal distribution function. For ρ=0,
the expectation value of di(t), to be interpreted as borrower PD, is per definition

E(di(t)) = P (xi(t) ≤ Φ−1(p)) = Φ(Φ−1(p)) = p , (7)

independently of the evolution of ϵ(t). Therefore the expection value of a default rate
RD(t) is also

E(RD(t)) = p , given ρ = 0. (8)

For the general case with correlations ρ ̸= 0, we can calculate a conditional expecta-
tion value (in the following denoted with a subscript c) for a default rate, i.e. conditional

1From a macroeconomic perspective one would naturally assume autocorrelation at least for the time
series ϵ(t). However, the use of the ASRF model lies mainly in studies of the overall through-the-cycle
distribution of default rates where the ordering of good and bad years is of minor importance.
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on the realization of ϵ(t) at a given time t:

Ec(RD(t)) = E(RD(t)|ϵ(t) = ϵt) = Ec

 1

N(t)
·
N(t)∑
i=1

di(t)


= Ec(di(t)) = P

(
xi(t) ≤

Φ−1(p)−√
ρϵt√

1− ρ

)
= Φ

(
Φ−1(p)−√

ρϵt√
1− ρ

)
.

(9)

Obviously it is equal to the conditional expectation value for the default variable of
every single borrower. It is possible to calculate a long-term expectation value of the
default rate by averaging over the conditional expectation values. Remembering that
ϵ(t) is standard-normally distributed and using a Gaussian integral table we find:

E(RD) = E(Ec(RD(t))) =

∫
Φ

(
Φ−1(p)−√

ρϵt√
1− ρ

)
N (ϵt)dϵt = Φ(Φ−1(p)) = p (10)

3 Results

As discussed in section 2.2 there are two approaches to calculate the statistical uncer-
tainty of a PD estimation based on historical portfolio snapshots. Either the snapshot
dates t are considered being randomly chosen or they are considered as a pre-defined or
deliberately chosen set. In the following subsections we derive analytical formulas for
confidence intervals under these two approaches in the ASRF model.

3.1 Uncertainty in case of a pre-defined set of portfolio snapshots

In this subsection we consider portfolio snapshot dates t in the past with given realiza-
tions ϵ(t) = ϵt of the systematic risk factor in the ASRF model. Hence, we are calculating
the statistical uncertainty of our PD estimation in terms of a confidence interval derived
from the conditional variance of default rates, i.e. conditional on the states of the econ-
omy defined by ϵt which are considered relevant for the estimation of the TTC PD. In
this case, statistical uncertainty only stems from the fact that we have a finite sample
size N and the inherent randomness of individual borrower defaults.

3.1.1 Conditional default rate for a single portfolio snapshot

To calculate the conditional variance of RD(t) at a given point in time t, we exploit the
independence of the idiosyncratic risk factors xi(t) in the ASRF model, which implies
that the Bernoulli variables di(t) are independent of one another, conditional on ϵt,
namely
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Covc(di(t), dj(t)) = Cov (di(t), dj(t)|ϵ(t) = ϵt)

= Ec (di(t) · dj(t))− Ec(di(t)) · Ec(dj(t))

= P

(
xi(t) ≤

Φ−1(p)−√
ρϵt√

1− ρ

∧
xj(t) ≤

Φ−1(p)−√
ρϵt√

1− ρ

)
− P

(
xi(t) ≤

Φ−1(p)−√
ρϵt√

1− ρ

)
· P
(
xj(t) ≤

Φ−1(p)−√
ρϵt√

1− ρ

)
= 0

(11)

for i ̸= j. Given this fact and the identity of Ec(RD(t)) and Ec(di(t)) from eq. (9) the
conditional variance of the portfolio default rate can be derived as

Varc(RD(t)) = Varc

 1

N(t)
·
N(t)∑
i=1

di(t)


=

Ec(RD(t)) · (1− Ec(RD(t)))

N(t)
.

(12)

This expression is similar to the variance of default rates of uncorrelated borrowers.
The difference is that in the latter case Ec(RD(t)) can be simply replaced by the pa-
rameter p of the underlying Bernoulli distribution at any time t. The Wald confidence
interval for the at confidence level 1− α, conditional on ϵ(t) = ϵt, is also of similar form
as in eq. (3):

Ru,l
D,α(t) = rD(t)± Φ−1

(
1− α

2

)
·

√
rD(t) · (1− rD(t))

N(t)
. (13)

This is not surprising because, as discussed in section 2.3, in the ASRF model corre-
lation between defaults exclusively stems from the coupling of all borrowers’ asset values
to the systematic factor.

3.1.2 Conditional default rate in the long-run average

Taking advantage of the results of section 3.1.1 we can perform the analogous calculation
for the long-run average default rate RL as defined in eq. (1). Its expectation value in
the ASRF model, conditional on the realizations ϵt of the systemic risk factor in the
pre-defined timeframe, reads

Ec(RL) = Ec

(
1

T

T∑
t=1

RD(t)

)
=

1

T

T∑
t=1

Ec(RD(t)) (14)

where Ec(RD(t)) is given in eq. (9). To obtain the conditional variance we use the
conditional independence
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Covc(di(t1), dj(t2)) = Cov (di(t1), dj(t2) | ϵ(t1) = ϵt1 , ϵ(t2) = ϵt2) = 0 (15)

for i ̸= j or t1 ̸= t2 (or both), which can be derived in analogy to eq. (11), and the result
from eq. (12). The conditional variance of RL then reads

Varc(RL) = Varc

(
1

T

T∑
t=1

RD(t)

)
=

1

T 2

T∑
t=1

Varc(RD(t))

=
1

T 2

T∑
t=1

Ec(RD(t)) · (1− Ec(RD(t)))

N(t)
.

(16)

This shows that, despite borrower defaults being implicitly correlated by the influ-
ence of the systematic factor, the variance of the long-run average default rate keeps a
form similar to the well-known σ2 = p(1−p)

N which holds for uncorrelated defaults. The
difference resides in the time dependence of Ec(RD(t)), which arises because of borrowers
being subject to a systematic risk factor ϵ(t) incorporating effects of the economic cycle.

From eq. (16) we can derive the Wald interval at confidence level 1 − α for the
through-the-cycle PD, whose estimator is RL under the assumption of a fixed timframe:

Ru,l
L,α = rL ± Φ−1

(
1− α

2

)
· 1
T

·

√√√√ T∑
t=1

rD(t) · (1− rD(t))

N(t)
. (17)

If a bank decides to weight the annual default rates RD(t) unequally with weights wt

to calculate the long-run average, the expression for the confidence interval changes to

Ru,l
L,α = rL ± Φ−1

(
1− α

2

)
·

√√√√ T∑
t=1

w2
t

rD(t) · (1− rD(t))

N(t)
. (18)

As an example, the result of eq. (17) is illustrated in Figure 1 as a 95% confidence
interval (α = 0.05) for RL in a fictitious portfolio of 10000 borrowers. The solid line
represents a time series of 10 observed annual default rates, with their own 95% Wald
confidence intervals shown as error bars. The dashed lines are the center, the upper and
lower bound of the confidence interval for RL respectively. Obviously the uncertainty of
the long-run average default rate is considerably smaller than the uncertainties of the
default rates at times t.

3.2 Uncertainty in case of random choice of portfolio snapshots

In this subsection we consider portfolio snapshot dates t as randomly chosen to estimate
a TTC PD which in this case must be understood as a hypothetical ”all-time” average.
Thus, in addition to the uncertainty from finite sample size at a given time t, the second
type of uncertainty discussed in section 2.2 comes into play, namely uncertainty from
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Figure 1: Example for a time series of rD(t) (solid line) with a 95% confidence interval for RL

due to limited sample size

the choice of t or, to put it differently, from the finite length of the timeframe t = 1, .., T .
This uncertainty can only vanish in the limit T → ∞, even in the limit N → ∞. In a
recent EBA staff paper [Casellina et al., 2021], this second type of uncertainty has been
intensively studied in the limit N → ∞, albeit with a focus rather on the tail of the
distribution of default rates than on the long-run average. We will keep N finite in the
following.

In contrast to the previous subsection where a confidence interval for the PD was
derived from conditional variances, we now have to consider the total variances of default
rates, see e.g. appendix B of [Gordy, 1998]. By the law of total variance we find

Var(RD(t)) = E(Varc(RD(t)) + Var(Ec(RD(t)) (19)

where Ec(RD(t)) and Varc(RD(t)) have been calculated in the previous section. We hence
have to calculate the expectation value of Varc(RD(t)) and the variance of Ec(RD(t))
over all possible values of ϵ(t) given the standard-normal distribution of this risk factor.
Assuming a constant portfolio size N(t) = N this total variance is

Var(RD(t)) = E

(
Ec(RD(t)) · (1− Ec(RD(t)))

N

)
+ E(Ec(RD(t))

2)− E(Ec(RD(t)))
2

=
1

N

(
E(Ec(RD(t))− E(Ec(RD(t))

2
)
+ E(Ec(RD(t))

2)− E(Ec(RD(t)))
2,

(20)

which can be simplified with the help of eq. (10) and a similar Gaussian integral calcu-
lation for the expectation value of E(Ec(RD(t))

2) to obtain the result

Var(RD(t)) =
1

N

(
p− Φ2

(
Φ−1(p),Φ−1(p); ρ

))
+Φ2

(
Φ−1(p),Φ−1(p); ρ

)
− p2. (21)

The function Φ2(x, y; c) is the bivariate cumulative standard normal distribution for the
variables x, y with the correlation parameter c. In the limit ρ = 0 the identity
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Φ2

(
Φ−1(p),Φ−1(p); 0

)
= p2 holds, hence the total variance reduces to the well-known

form σ2 = p(1−p)
N for uncorrelated defaults.

Considering now the long-run average default rate (1), we find the total variance

Var(RL) = Var

(
1

T

T∑
t=1

RD(t)

)
=

1

T 2

T∑
t=1

Var(RD(t))

=
1

T ·N
(
p− Φ2

(
Φ−1(p),Φ−1(p); ρ

))
+

Φ2

(
Φ−1(p),Φ−1(p); ρ

)
− p2

T
.

(22)

Obviously the variance of RL increases with increasing p and increasing ρ and de-
creases with increasing T and increasing N . In section 4 we will study this result
numerically. The Wald confidence interval for the TTC PD under the assummption of
a random choice of portfolio snapshots is 2

Ru,l
L,α = rL ± Φ−1

(
1− α

2

)
·
√
Var(RL)

∣∣∣
p=rL

. (23)

with the expression for the variance from eq. (22) and the observed long-run average rL
as defined in eq. (2).

4 Discussion: Numerical evaluation and consequences for MoC

4.1 Numerical evaluation of Wald confidence intervals

In this section we evaluate our main analytical results, the Wald confidence intervals in
eqs. (17) and (22), numerically to illustrate their size. This allows to compare the two
possible approaches to each other and to the estimated PD level to which they refer. We
assume the input parameters

� α = 0.05, i.e. all confidence intervals are evaluated at 95% level, and

� T = 10.

From an empirical point of view, it has long been known from analyses of the empir-
ical distribution of default rates measured by rating agencies that default rates exhibit
large fluctuations. Research has shown, see e.g. [Schuermann and Hanson, 2004,Cantor
et al., 2007], that for investment-grade default rates standard deviations of the same
order of magnitude as the mean are not uncommon. Our results provide a theoretical
underpinning of this empirical knowledge.

In Figure 2 the half width of the confidence interval defined by eq. (17) is shown
for different portfolio sizes N and different long-run levels of default rates rL, where
the observation window which underlies rL is treated as given. To keep this illustration

2In practical applications where the value of ρ for a particular portfolio is unknown, one might use
the empirical variance of the observed annual values rD(t) instead of eq. (21) to estimate the uncertainty
of RL.
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simple we neglect the variations of rD(t) over time, which are of minor importance is
this case, and set rD(t) = rL. Note that the plot axes are logarithmically scaled.

Figure 2: Uncertainty for a fixed timeframe: Half width of the 95% confidence interval for
different values of rL (T = 10).

Figure 3: Uncertainty for a random choice of timeframe in the limit N → ∞: Half width of the
95% confidence interval for different values of rL (T = 10).

The figure demonstrates that statistical uncertainty of PD due to limited sample size
can be of the same order of magnitude as the PD itself for small segments or rating grades
with N ∼ 100, in particular for PDs below 1%, i.e. for typical low-default portfolios. For
larger segments, this will not be the case, as the uncertainty decreases with increasing
N as expected. The expression from eq. (17) can readily be used to define a MoC of
category C at a confidence level to be defined by the bank, assuming a given or prescribed
choice of the observation window.
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In Figure 3 the half width of the confidence interval defined by eq. (22) is shown
for different values of the asset correlation ρ and different observed long-run levels of
default rates rL. In contrast to Figure 2 the observation window is treated as randomly
selected. In order to separate the time-effect from the size-effect, we show the results
here for the limit N → ∞. Note that for ρ = 0 this confidence interval is of width
0. The figure demonstrates that, for the realistic value of 10 available annual historical
time slices, statistical uncertainty of PD due to the choice of the timeframe can easily
be larger than the uncertainty due to sample size (see above) if ρ is not assumed to be
very small. It can also be of the same order of magnitude as the PD itself. This is the
case although the ASRF model does not assume any autocorrelation in the time series
of default rates. It is to be expected that autocorrelation would further increase the size
of this type of uncertainty.

4.2 Numerical simulation of confidence intervals

To ensure that the approximations and shortcomings of a Wald confidence interval,
see [Brown et al., 2001], do not lead to misleading conclusions we perform, in this
subsection, a numerical simulation of the confidence interval of a TTC PD. To this
end, we simulate defaults in a portfolio of N borrowers under the assumptions of the
ASRF model, see section 2.3. We perform multi-year simulations with T = 10 for
fixed values of N , p and ρ, whereby for each year ϵ and the xi of the borrowers are
randomly selected without any autocorrelation. After calculating the multi-year average
of the resulting default rates over the simulation period, we repeat the procedure. This
approach corresponds to the one treated analytically in section 3.2, i.e. to a random
choice of the observation period.

After 1000 simulations the 95-th percentile of the 10-year average default rates is cal-
culated and the predefined value of p is subtracted from it since it can be considered the
”true” value of the TTC PD. The result corresponds to the half width of the confidence
interval in an estimation of the TTC PD. We display the results for various values of p,
N and ρ in figure 4. Note that the plot axes are logarithmically scaled.

As can be seen in this figure, the confidence intervals can be of the same order of
magnitude as the target PD itself or even greater, depending on the amount of correlation
among borrowers. This is the case even if the number of borrowers is large. We find
that N does not play a significant role for large values of ρ where the uncertainty is
completely dominated by the second type, i.e. the uncertainty stemming from the choice
of the timeframe.

To illustrate how a Margin of Conservatism of the size indicated by these confidence
intervals translates to capital requirements in the IRB approach, we show the effect of
a PD increase, ceteris paribus, on IRB risk-weighted assets in table 1, using the formula
in article 153 of the EU Capital Requirements Regulation and inserting a maturity of
M = 1. As an example: For an estimated PD of 0.1% and a relative add-on of 100% due
to statistical uncertainty, i.e. a final conservative PD of 0.2%, the capital requirement
for credit risk is 61% higher than it would be without the add-on. Given the results
of this chapter it becomes clear that MoC for statistical uncertainties in case of corre-
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Figure 4: Half width of the simulated 95% confidence interval for different values of p, N and ρ
(T = 10). The timeframe is considered to be randomly chosen.
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lated borrowers and in particular the treatment of the timeframe as either predefined or
randomly chosen has important consequences for banks’ capital requirements.

PD +50% +100% +200%

0.01% 1.39 1.75 2.41

0.10% 1.33 1.61 2.08

0.50% 1.23 1.40 1.66

1.00% 1.18 1.31 1.50

5.00% 1.18 1.33 1.55

1.00% 1.17 1.27 1.34

Table 1: Capital factors for different PD levels and a relative MoC add-on of 50%, 100% and
200% to the PD

5 Conclusions

We have shown in this article which two types of statistical uncertainties arise in PD
estimation for a portfolio with correlated borrower defaults. We have shown

� how these uncertainties be quantified and combined in the ASRF model, i.e. the
model underlying the risk weight formulas of the IRB approach and

� under which assumptions the choice of reference dates contributes to the uncer-
tainty.

By means of a numerical evaluation and simulation we have demonstrated that a
Margin of Conservatism of category C, if calculated as a 95% confidence interval around
the PD under the ASRF model assumptions, may have important consequences for
banks’ capital requirements under the IRB approach. Important drivers of the size of
statistical uncertainty are

� the confidence level,

� the size of the portfolio,

� the assumed or derived asset correlation between borrowers and

� the length of the historical timeframe.

A crucial debate is whether and how the choice of the historical timeframe underlying
the estimation is to be included in the calculation of regulatory MoC. On the one hand
banks are required to choose this timeframe following detailed regulations to reduce the
risk that the observed average default rate of this timeframe differs materially from the
”true” TTC PD. On the other hand, available data history is usually limited, often to
one single macroeconomic cycle, so from a mathematical point of view the uncertainty
from the choice of the timeframe cannot be fully excluded. As of now, IRB regulations
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leave room for interpretations in this point. An aspect which leaves room for future work
is how, in case of calibration and MoC calculation on rating-grade level, the rating phi-
losophy (PiT or TTC) influences the MoC. If the ratings exhibit a strong PiT behaviour,
one expects the default rates of single rating grades to be rather constant in time, hence
the uncertainty from the choice of the timeframe in determining the long-run average
default rate of a grade is expected to be lower than in a TTC rating system, while it is
not clear if the allocation of borrowers to grades is more uncertain in this case.
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