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Price Calibration and Hedging of Correlation
Dependent Credit Derivatives using a Structural

Model with α-Stable Distributions

Abstract

The emergence of CDS indices and corresponding credit risk transfer markets with high liquidity
and narrow bid-ask spreads has created standard benchmarks for market credit risk and correlation
against which portfolio credit risk models can be calibrated. Integrated risk management for correla-
tion dependent credit derivatives, such as single-tranches of synthetic CDOs, requires an approach that
adequately reflects the joint default behavior in the underlying credit portfolios. Another important
feature for such applications is a flexible model architecture that incorporates the dynamic evolution
of underlying credit spreads. In this paper, we present a model that can be calibrated to quotes of
CDS index-tranches in a statistically sound way and simultaneously has a dynamic architecture to
provide for the joint evolution of distance-to-default measures. This is accomplished by replacing the
normal distribution by smoothly truncated α-stable (STS) distributions in the Black/Cox version of
the Merton approach for portfolio credit risk. This is possible due to the favorable features of this
distribution family, namely, consistent application in the Black/Scholes no-arbitrage framework and
the preservation of linear correlation concepts. The calibration to spreads of CDS index tranches is
accomplished by a genetic algorithm. Our distribution assumption reflects the observed leptokurtic
and asymmetric properties of empirical asset returns since the STS distribution family is basically
constructed from α-stable distributions. These exhibit desirable statistical properties such as domains
of attraction and the application of the generalized central limit theorem. Moreover, STS distributions
fulfill technical restrictions like finite (exponential) moments of arbitrary order. In comparison to the
performance of the basic normal distribution model which lacks tail dependence effects, our empirical
analysis suggests that our extension with a heavy-tailed and highly peaked distribution provides a
better fit to tranche quotes for the iTraxx IG index. Since the underlying implicit modeling of the
dynamic evolution of credit spreads leads to such results, this suggests that the proposed model is
appropriate to price and hedge complex transactions that are based on correlation dependence. A
further application might be integrated risk management activities in debt portfolios where concen-
tration risk is dissolved by means of portfolio credit risk transfer instruments such as synthetic CDOs.

JEL classification: G12, G13

Keywords: Collateralized debt obligations, credit default swaps, index tranches, pricing, risk manage-
ment, heavy tails, α-stable distribution
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1 Introduction

Credit risk modeling has developed rapidly since the late 1990s. This has been fostered by the sig-
nificant growth in the credit derivatives market of more complex and model–driven trading strategies
and credit risk transfer activities. The market for synthetic collateralized debt obligations (CDOs), a
vehicle that transfers the risk of a pool of single–name credit default swaps (CDS), is an example.

The development of such technologies has been fueled by the growth and liquidity of the CDS market
and the creation of broad–based credit risk indices such as iTraxx or CDX. These CDS index products
provide standard benchmarks against which other more customized pools of credit exposure can be
assessed. Moreover, they serve as building blocks for other products such as CDS index tranches.
These standardized tranches of a CDS index portfolio render possible a marking–to–market of credit
risk correlations. By means of a standard model, their competitive quotes – in terms of cost of pro-
tection of a single tranche – are translated into so–called “implied correlations”.

The current standard for price quotation of credit portfolio products – such as CDOs – is the one-
factor Gaussian copula. It is a tool to aggregate information about the impact of default correlation
on the performance of a rather static credit portfolio. Given a representative estimate of the term
structure of credit spreads and a representative loss given default (LGD), the market-standard version
of this copula is characterized by a single parameter to summarize all correlations among the various
borrowers’ default times. However, the fact that index tranches are quoted frequently and with rel-
atively narrow bid–ask spreads has aided market participants in identifying several shortcomings of
the existing pricing models for CDOs. In particular, the Gaussian copula model does not fit market
prices very well.1 The model underperformance can be observed due to the pronounced correlation
smile when implied CDO tranche correlations are plotted as a function of tranche attachment points.

One possibility to resolve these shortcomings is to consider heavy–tailed distributions. In comparison
to the normal distribution, heavy–tailed distributions incorporate the more frequent occurrence of ex-
treme events in empirical asset returns. In the multivariate case, they exhibit measures of dependence
that go beyond the concept of linear correlation. For example, certain tail dependence effects repli-
cate an increase in credit default clustering during times of economic recession. The consideration of
such effects may lead to improved risk management applications with respect to pricing and hedging
accuracy.

An example of a heavy–tailed distribution is the double Student–t copula proposed by Hull and
White (2004) where the interaction of heavy–tailed systematic and idiosyncratic factors lead to a
default environment that is based on two effects: The basic linear dependency known as the only
source of dependency in the Gaussian framework and tail dependence effects that create extreme
systematic co–movements of firm values, combined with extreme idiosyncratic outcomes. This model
exhibits a good overall fit to standardized index tranches, since prices are closer to the market quotes.2

The heavy-tailed copula model suggested by Hull and White, however, has two shortcomings.3 The
first is that the tail-fatness cannot be changed continuously. The second is that the maximum tail-
fatness occurs when the Student–t distribution has 3 degrees of freedom.4

Another important aspect for integrated pricing and credit risk management applications is the em-
ployment of dynamic approaches that incorporate both an adequate modeling of default dependency
as well as the joint evolution of credit spreads.5 The latter aspect is preserved by the structural model
of Hull, Predescu and White (2005) (HPW) that is a dynamic Merton–style approach in the flavor of
Black and Cox (1976) incorporating intertemporal defaults.

On this modeling basis we enrich the desirable features of the dynamic structural model with a complex

1See for example Burtschell et al. (2005), p. 17.
2See Burtschell et al. (2005), p. 17.
3See Wang, Rachev and Fabozzi (2007), p. 12
4For these reasons, Wang, Rachev and Fabozzi (2007) introduce two new one-factor heavy-tailed copula models: (1)
the one–factor double–t distribution with fractional degrees of freedom copula model and (2) the one–factor double
mixture distribution of t and Gaussian distribution copula model. In each model, there is a parameter to continuously
control the tail–fatness of the copula function. Moreover, the maximum tail-fatnesses of our two models are much
larger than that for Hull and White’s one-factor double–t copula model.

5See Duffie (2004).
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dependence environment similar to the one in the double Student–t copula. We consistently replace
the Gaussian distribution assumption in the underlying factor model with a smoothly truncated α–
stable (STS) distribution.6 This distribution family can be applied in the Black–Scholes no–arbitrage
model due to finite moments of arbitrary order.

According to tail probability studies, the STS distribution family assigns much more probability mass
to the tails than the Gaussian and even the Student–t distribution. Also, Wang, Rachev and Fabozzi
(2007) have used continuous parameters for heavy–tailedness in copula functions to analyze time–
dependent model performance in pricing standard tranches. They show that the Student–t copula
model with non–fractional degrees of freedom is outperformed. Both reasons led to our choice to
employ the STS distribution. It exhibits a continuous parameter to control leptokurtosis with less
restriction than the Student–t distribution. Moreover there is a continuous parameter for asymmetry.

This combination of the HPW model with an engineered distribution leads to a considerable improve-
ment in both modeling of default timing as well as joint credit spread movements in credit portfolios.
In this way, established concepts such as the Black–Scholes no–arbitrage and linear correlation can be
preserved while simultaneously providing improvements in price quality, hedging accuracy, and risk
management effectiveness. Two applications include integrated pricing and management for portfolio
credit risk as well as pricing and hedging of even complex structures like CDO2 (i.e., CDOs of CDOs)
or options on single-tranche CDOs.

The paper is organized as followed. The structural model by Hull–Predescu–White is outlined in
Section 2. Section 3 enhances the structural model by replacing the Gaussian distribution assumption
with the STS distribution assumption. The applied calibration and valuation framework for index
tranches is explained in Section 4. Section 5 reports the fitting properties of the model to standardized
index tranches and Section 6 summarizes the contents of this paper.

2 The Hull–Predescu–White Model

2.1 Outline of the model

As in the case of modeling all derivative instruments, moving from the general principles of pricing to
that of pricing a specific type of derivative one must consider the specific contractual feature. For the
CDS index tranches, this means taking into account the fact that a tranche’s outstanding notional
amount declines stochastically over time. A fixed spread is paid to the protection seller on the decay-
ing tranche notionals with the payments being made quarterly. So for each intermediate payment day
between inception and termination, a loss distribution has to be assessed incorporating only discrete
default times, in the simple case.

In practice, a one–factor Gaussian copula is often used to model intertemporal stochastic cash flows.7

Since default events in the pool of names between premium payment days are relevant for pricing,
credit default distributions for respective time horizons ranging from t0 – the beginning of the deal –
to the premium payment dates tj are generated in the first step. In the second step, the stochastic
changes between the payment days are used to price the tranches. The standard one–factor Gaussian
copula model can therefore be regarded as static since there is no dynamic evolution of the underlying
distance–to–default measures or, similarly, credit spreads.8

The structural model of Hull, Predescu and White (2005) however is much richer because the portfolio
behavior is modeled chronologically until maturity. This is accomplished by a factor model based on
the approach of Black and Cox (1976). Their extension of the static Merton model has a first passage
time structure where a default event is triggered as soon as the value of the assets of a company
drops below a continuous barrier level for the first time. This is realized by a general diffusion process
of an obligor’s default variable and an appropriately chosen barrier function that is made consistent
with the underlying default time distribution. In the Hull–Predescu–White (HPW) extension, the
default variables of the underlying obligors follow correlated diffusion processes and the barrier for

6Menn and Rachev (2005b).
7Similar to the concept of implied volatility in option pricing, the Gaussian copula has become the market standard to
communicate prices of synthetic CDO tranches.

8See Hull, Predescu and White (2005), p. 11.

2



each obligor is calibrated in a way that it is made consistent with the respective marginal default
time distributions. During the discrete simulation of the correlated processes, the common factor M
adopts different values being constant in the specific time span of one process increment. In this way
the default environment changes over time. As a by–product of this procedure, the joint evolution of
correlated credit spreads is obtained.

In accordance with the standard market model, the HPW model is set up with a diffusion process for
the value of the firm Vi of obligor i as follows:

dVi(t) = µiVi(t)dt + σiVi(t)dWi(t)

with
Vi(T ) = Vi(t)e(µi−σ2

i /2)(T−t)+σiXi(t,T )

and
Xi(t, T ) d= Wi(T )−Wi(t).9

The expected return of the firm is µi, σi is the instantaneous standard deviation, and Wi(t) is a
Brownian motion under the real measure. Variable Xi can be imagined as some function of the value
of the assets or the creditworthiness of company i. The resulting barrier equation is:

Di(t) =
lnKi − lnVi(t)−

(
µi − σ2

i /2
)
(T − t)

σi
,

with Ki as the notional repayment at maturity T in the Merton context. Hull and White (2001)
present a discretized version of the model that can be solved numerically. This is necessary for exten-
sions with distributions that do not exhibit closed–form expressions.

The model is set up in terms of the risk–neutral default probability density q(t). This means that
q(t)∆t is the probability of default between t and t + ∆t as seen at time zero. In contrast, the hazard
(default intensity) rate λ(t) is defined as the probability of default between t and t + ∆t as seen at
time t conditional on no earlier default. The two quantities provide the same information about the
default probability environment and they are related by

q(t) = λ(t)e
−

TR

t

λ(τ)dτ
,

when the exponential model for the default time distribution is employed. We later assume when we
extend the model that default probabilities for entities of a homogeneous portfolio are generated by
the same Poisson processes with constant “risk–neutral” default intensity λ so that:

Q(t) = 1− e−λt and Q(t, t + ∆t) = e−λt − e−λ(t+∆t).

With this assumption, we can derive the representative default intensity λ from the quoted CDS index
spread as shown in Section 4.1. This allows us to compute “intermediate” default time distribution
slices like Q(t, t + ∆t) to avoid the interpolation of risk–neutral default probabilities since the Black–
Cox default barrier methodology is extremely sensitive to the applied interpolation method of the risk-
neutral default probabilities retrieved from CDS or credit spread curves. In our calibration procedure,
we use the simple exponential model to retrieve a default probability distribution function.

2.2 Construction of the Discrete Default Barriers

The default barrier algorithm is conveniently modeled in a synchronized way to the time grid of CDS
premium payment dates tj , j = 1, . . . , J . In general, finer time grids will make the model arbitrarily
close to an environment where defaults can happen at any time. In our computations, the default
probability distribution is discretized so that defaults are modeled to happen at times tj and further,
they are associated with the midpoints tj−1+tj

2 in the pricing part in Section 4. Due to simplification,
accrual effects between premium payment days will be neglected.

9With
d
= meaning equality in distribution.
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The objective is to determine a default barrier for each company such that the default event is triggered
when the firm’s diffusion process first hits the barrier at this time. The barrier must be chosen so that
the first passage time probability distribution is the same as the default probability densities q(t). It
is assumed that Xi(0) = 0 and that the risk–neutral process for Xi(t) is a Wiener process with zero
mean and unit variance per year. Additionally, the following definitions have to be made:

• the time grid is equidistant with δ = tj − tj−1; j = 1, . . . , J ,

• the risk–neutral first passage time probability for the interval [tj−1, tj ] is
Qi(tj−1, tj); j = 1, . . . , J ; i = 1, . . . , n,

• the value of the default barrier for company i at time tj is Di(tj),

• fij(x)∆x denotes the probability that Xi(tj) lies between x and x + ∆x and there has been no
default prior to time tj .

These definitions imply for the probability of first passage at time tj that

Q(tj) = 1−
∞∫

Dij

fij(x)dx.

Both Dij and fij(x) can be determined from Qi(tj−1, tj). The first barrier is found by the first
increment Xi(t1) which is distributed zero mean and variance δ. As a result,

fi1(x) = ϕ
(x

δ

)
and Qi(t0, t1) = Qi(t1) = Φ

(
Di1√

δ

)
.

This implies that
Di1 =

√
δΦ−1(Qi(t1)).

The first barrier has been identified. If the distribution under consideration is not normal and there
is no inverse evaluation method available, the barrier can be found by standard numerical procedures.

The probability that, in t1, the process is in a survival position above the first barrier Di1 and that
it will default in t2 has to be equal to the probability of first hitting the barrier between t1 and t2.
For determining the barrier Di2, in our algorithm we find an approximation to the solution by nested
intervals up to a certain tolerance level. The general equation for payment times tj , j = 2, . . . , J is

Q(tj−1, tj) =

∞∫
Di,j−1

fi,j−1(u) Φ
(

Dij − u√
δ

)
du. (1)

The value for fij(x) for all x above barrier Dij is

fij(x) =

∞∫
Di,j−1

fi,j−1(u) ϕ

(
x− u

δ

)
du. (2)

where ϕ and Φ denote the standard normal probability density and distribution function, respectively.

Equations (1) and (2) can be solved numerically in the following way: For time grid point j = 1, . . . , J
we consider K values for Xi(tj) between Dij and a multiple of

√
tj . In this way we bound the half–open

intervals on the vertical line dynamically according to the deviation of the respective distribution. We
define xijk as the kth value of Xi(tj) (1 ≤ k ≤ K) and πijk as the probability that Xi(tj) = xijk with
no earlier default. The discrete versions of equations (1) and (2) are

Q(tj−1, tj) =
K∑

k=1

πi,j−1,kΦ
(

Dij − xi,j−1,k√
δ

)
and

πijl =
K∑

k=1

πi,j−1,k pijkl,
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where pijkl is the probability that Xi moves from xi,j−1,k at time tj−1 to xijl at time tj . This can be
accomplished with the following equation

pijkl = Φ
[
0.5(xijl + xi,j,l+1)− xi,j−1,k√

δ

]
− Φ

[
0.5(xijl + xi,j,l−1)− xi,j−1,k√

δ

]
for 1 < l < K. For l = K we use the same equation with the first term on the right hand side equal
to 1 to represent the unbounded integral

pijkK = 1.0− Φ
[
0.5(xijl + xi,j,l−1)− xi,j−1,k√

δ

]
.

When l = 1 we use the same equation with 0.5(xijl + xi,j,l−1) set equal to Dij to define the first
interval in the survival region

pijk1 = Φ
[
0.5(xijl + xi,j,l+1)− xi,j−1,k√

δ

]
− Φ

[
Dij − xi,j−1,k√

δ

]
.

In this way, for 1 < l < K there is assigned a certain probability mass of the process to be in
the interval [0.5(xijl + xi,j,l−1), 0.5(xijl + xi,j,l+1)] at time tj with the representative midpoint xijl.
This is conditional on survival up to time tj−1 which is quantified by the probability πi,j−1,k for the
representative midpoint xi,j−1,k.

2.3 Simulation and Dynamic Credit Spreads

There exists an analytic expression of the probability of first hitting the barrier between times t and
t + ∆t.10 When suppressing indices we have

Q(t, t + ∆t) = Φ
(

D(t + ∆t)−X(t)√
∆t

)
+ e2(X(t)−D(t))

µ−σ2/2
σ Φ

(
D(t−∆t)−X(t)√

∆t

)
(3)

which, in our case, will be given for ∆t = tj − tj−1, j = 1, . . . , J .

The process for the mean zero and variance δ state variable Xi is

dXi(t) = aidM(t) +
√

1− a2
i dZi(t)

when asset correlations are incorporated. In the Monte–Carlo implementation, we approximate this
by

∆Xi = ai∆M +
√

1− a2
i ∆Zi, (4)

where ∆M and ∆Zi are distributed i.i.d. N(0, δ) . The variables ai,M , and Zi in this model have a
slightly different meaning than in the one–factor Gaussian copula approach due to the different model
set–ups. Nevertheless, the correlation between the processes followed by the assets of companies i1
and i2, respectively, is ai1ai2 .

While the Gaussian copula is a reasonable approximation to the HPW model, it is limited due to the
fact that the only means of expressing dependence structures is given by the correlation coefficients.
However, this is insufficient in most realistic cases when marginal distributions are used that are
heavy–tailed. For example, the Student–t extension to the standard model outlined above exhibits
tail dependence effects which cannot be modeled in the Gaussian case. In the HPW approach, the
increments are constructed as the discrete convolution of two heavy–tailed variables. So the occur-
rence of extreme events enters the model at multiple stages. In case of the distribution being short
of a closed form, (3) is substituted by probabilities of default before maturity derived from the dis-
crete barrier algorithm. Hence, one is able to compute the joint evolution of the dynamic credit spread.

An extended barrier algorithm can easily be applied under the heterogeneous portfolio assumption:
The calibration will be carried out with each of the marginal default time distributions and whenever
the process Xi hits the specific barrier, a recovery rate Ri is assigned. The computational performance
of the simulation is not affected but discrete barriers have to be calibrated for each underlying.

10See Hull, Predescu and White (2005), p. 7.
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3 Extension with Smoothly Truncated Stable Distributions

In option pricing it is essential that the property of not only finite moments but also the existence of
finite exponential moments is guaranteed. This is fulfilled by the Gaussian distribution. Since Fama
(1965) and Mandelbrot (1963), however, it has been widely accepted that asset returns are asymmetric
and leptokurtic with heavy tails. Their proposed alternative was the Pareto or α- stable distribution
class. This class applies four parameters enabling the distribution to model excatly these features
found in asset returns. The deficiency, however, of the α-stable distributions becomes apparent when
computing moments, not even to mention exponential moments, since, under certain conditions to be
presented, they do not exist.

Therefore, we employ a new class of probability distributions called smoothly truncated α–stable
(STS) distributions. This distribution combines the modeling flexibility of stable distributions with
the existence of arbitrary moments and thereby qualifies for applications in the Black–Scholes–Merton
framework.

In this section, we will first briefly outline the characteristics of α–stable distributions and then present
the method by Menn and Rachev (2004b) who offer a calibrated Fast Fourier Transform (FFT) based
density approximation of α–stable distributions. The numerical generation of the cumulative α–stable
distribution function is essential for the the smooth truncation and standardization procedures needed
to set up the STS distribution. Finally, we present a method to simulate STS distributions based on
the method to generate α–stable samples by Chambers et al. (1976).

3.1 The Stable Distribution Family

3.2 Stable random variables

Stable distributions are characterized by four parameters. The tail index, index of stability, or char-
acteristic parameter α is responsible for the shape of the distribution in the tails as well as around
the median. It determines the rate at which the tails of the distribution taper off. When α = 2, a
Gaussian distribution results. When α < 2, the variance is infinite and the tails are asymptotically
equivalent to a Pareto law (i.e., they exhibit a power–law behavior). Distributions with 1 < α < 2
parameters have unbounded variance but bounded mean. Those with α between 0 and 1 have both
unbounded variance and mean. In general, moments of order δ exist up to δ < α.
Furthermore, skewness is accounted for by the parameter β ∈ [−1, 1]. Scale is modeled by the pa-
rameter σ > 0, and, finally, a measure of location is given by parameter µ ∈ R which, for α > 1,
represents the mean.

Moreover, stable distributions possess the property of domains of attraction. If an empirical distrib-
ution is in the domain of attraction of a stable law, it has properties which are close to those of the
specified stable law. The domain of attraction is completely determined by the tail behavior of the
distribution and as a result the stable law is the ideal model if the true distribution has the appropriate
tail behavior.

According to the stability property, appropriately centralized and normalized sums of iid α–stable
random variables are again α–stable. This in turn means that α–stable distributions lie in their own
domain of attraction which is a desirable property. Due to the Generalized Central Limit Theorem
(GCLT), the stable class provides limit distributions for scaled sums of infinite variance random vari-
ables.

Unfortunately, the application of stable laws in finance is at a disadvantage because of the lack of
closed–form expressions for their probability density and cumulative distribution functions for most
parameter values. Hence, numerical approaches have to overcome this deficiency.11

The α–stable distribution can be most naturally and conveniently described by its characteristic
function φ(t) – the inverse Fourier transform of the probability density function. The most popular
parameterization of the characteristic function of X ∼ Sα(σ, β, µ), i.e. an α–stable random variable

11See, for example, Zolotarev (1966).
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with parameters α, σ, β, and µ, is given by Samorodnitsky and Taqqu (1994)

log φ(t) =

{
−σα|t|α

(
1− iβsign(t)tan(πα

2 )
)

+ iµt , α 6= 1,

−σ|t|
(
1 + iβ 2

π sign(t)ln|t|
)

+ iµt , α = 1.
(5)

The representation in formula (5) is discontinuous at α = 1 and β 6= 0. This can be overcome by
shifting the variables by some amount depending on α and β. However, our representation fulfills our
requirements since in most of the cases, α for financial data is larger than 1.5.12 The parameter µ is
equal to the mean.

The concept of smooth tail truncation allows for the preservation of the properties of α–stable dis-
tributions in the “center” of the engineered distribution, whereas an exponentially declining function
replaces the power decaying tails of the stable law in order to guarantee the existence of arbitrary
moments. Before we will explain the construction, the properties and implementational aspects of the
STS distribution, an efficient algorithm for density approximations for stable non–Gaussian distribu-
tions will be outlined.

3.2.1 Density Approximation of Stable Distributions

The unambiguous relationship between the density function and the characteristic function is ex-
ploited by the FFT approach.13 Concerning the computational speed, the FFT–based approach is
faster for large samples, whereas the direct integration method favors small data sets as it can be
computed at any arbitrarily chosen point. The FFT–based approach is not as universal as the direct
integration method – it is efficient only for large α’s and only as far as the probability density function
calculations are concerned. When computing the cumulative distribution function, the former method
must numerically integrate the density, whereas the latter takes the same amount of time in both cases.

We therefore decided to implement a simplified version of the calibrated FFT–based density approxi-
mation by Menn and Rachev (2004b) who employ an adaptive Simpson rule for the quadrature of the
Fourier inversion integral. Since this approach lacks precision in the tails, they follow the suggestion of
DuMouchel (1971) to use some additional asymptotic series expansion developed by Bergström (1952)
in order to receive efficient tail approximations. The accuracy of the method is optimized with respect
to values obtained by Nolan’s STABLE.exe for a grid of parameter values of α and β. This is sufficient
for stable distributions since they are scale and translation (i.e. shift) invariant. Density evaluations
departing from the FFT grid nodes and the generation of the cumulative distribution function are
performed by cubic spline interpolations. In comparison to Nolan’s program, the approach results in a
significant reduction of the computation time while simultaneously preserving satisfactory accuracy.14

3.2.2 Simulation of Stable Random Variables

The complexity of the problem of simulating sequences of α–stable random variables comes from the
fact that there are no analytic expressions for the inverse F−1(x). A more elegant and efficient solution
for standardized skewed α–stable distributions was proposed by Chambers et al. (1976). The method
reduces to the well–known Box–Müller method for Gaussian distributions in the case of α = 2 (and
β = 0), and is based on a certain integral formula derived by Zolotarev (1966).

We can easily simulate a stable random variable for all admissible values of the parameters α, β, σ,
and µ, with random variable X being standard α–stable distributed using the following property: if
X ∼ Sα(1, β, 0) then, for α 6= 1, Y = σX + µ for α 6= 1 is Sα(σ, β, µ)–distributed.

3.3 Smoothly Truncated Stable Distributions

Guaranteeing a finite mean for the asset price, the class of STS distributions share with stable distri-
butions some realistic features such as leptokurtosis and skewness which has been observed in asset
return behavior. Despite the fact that STS distributions possess light tails in the mathematical sense,

12See Rachev et al. (2005), figure 1.
13See, for example, Höchstötter, Rachev and Fabozzi (2005).
14This is comprehensively quantified in Menn and Rachev (2004b).
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they provide a flexible tool to model extreme events since a reasonable amount of probability is as-
signed to extreme events. Technically, however, tail dependence of STS distributions is zero due to
exponential tails.

STS distributions are obtained by smoothly replacing the upper and lower tail of an arbitrary α–stable
cumulative distribution function by two appropriately chosen normal tails. The result is a continu-
ously differentiable probability distribution function with support on the whole real line. By this
construction, the density of an STS distribution consists of three parts: Left of some lower truncation
level a and right of some upper truncation level b, it is described by two outer normal densities and in
the center the density equals the one of a stable distribution. If the stable distribution in the center
is symmetric around zero, the means of the two normal distributions only differ in sign while the
variance is equal. However, this does not apply to a skewed stable center distribution.

Due to the finite moment generating function which results from truncation, STS distributions lie in
the domain of attraction of the Gaussian law. Owing to the amount of probability of extreme events,
the speed of convergence to the normal distribution is extremely slow. It can be stated that the family
of STS distributions provides impressive modeling flexibility and turns out to be a viable alternative
to many popular heavy–tailed distributions.

STS distributions form a six parameter distribution family S
[a,b]
α (σ, β, µ), where a and b are the trun-

cation points of the α–stable distribution. The parameters (µi, σi) of the two normal distributions,
respectively, are uniquely defined by construction.

In the HPW framework reviewed above, the only imposed conditions on the factors are a continuous
probability distribution function with support on the whole real line having zero mean, unit variance,
and a finite moment generating function. A properly standardized STS distribution uniquely defined
by the vector of stable parameters θ = (α, β, σ, µ) fulfills these requirements. Truncation levels for all
four stable parameters can always be efficiently calculated by moment matching conditions such that
the resulting distribution is standardized.

Analogous to stable random variables, there is an interpretation for STS distributions between para-
meter α and the probability for extreme events. The latter increases monotonically with decreasing
α, decreasing β, and decreasing σ. Keeping the other stable parameters constant, the left truncation
level a decreases and the right truncation level b increases monotonically with increasing α. This
follows mathematical intuition since for small values of α, the stable center distribution is extremely
heavy–tailed and has to be cut off near the mode to arrive at a unit variance. Since σ represents the
scale parameter of the stable distribution part, the variation of the center distribution increases with
increasing σ: The truncation has to be accomplished in a certain range around the mode to guarantee
a variance of one.15

Regarding the implementation of the density estimation, the modules from the calibrated FFT–density
approximation for the center with Bergstöm series expansion for the tails can be utilized to perform
the necessary interpolation and integration procedures on the basis of cubic splines. For the random
sample generation, the algorithm by Chambers–Mallows–Stuck can be used in combination with an
algorithm for Gaussian samples for the tail distributions.

3.3.1 STS Distributions in the HPW Model

We extend the HPW model by standardized STS distributed factors so that

∆Xi = ai∆M +
√

1− a2
i ∆Zi (6)

and ∆M/
√

δ and ∆Zi/
√

δ have independent standardized STS distributions with the same parame-
ters α, β, and σ. This is in accordance with the factor extension of HPW, so that the correlation
between the assets is ρ = ai1ai2 for each different pair of assets.

Hull and White (2004) have shown that the double Student–t copula approach with same tail index

15See Menn and Rachev (2005b), p. 11.
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for both factors results in a good market fit.16 For this reason we use the same parameters for the
distributions of ∆M and ∆Zi.

Convolutions of the STS distributions have to be computed numerically. The idea for the implemen-
tation is similar to the construction of the default barriers as explained in Section 2.2. There is a grid
of intervals and a certain amount of probability is assigned to the midpoints. This applies for the left
summand of the right hand side of equation (6). Conditional on those probabilities we build up the
cumulative distribution for certain grid points with the distribution of the right summand of equation
(6). The open interval distribution parts of the sum of the two factors are adapted in the same way as
for the barrier computations to represent infinite support of the distributions. These operations could
be extended to several independent systematic factors in the usual way, but we conveniently restrict
ourselves to a one–factor model.17

4 The Valuation of Synthetic CDOs

The purpose of this section is to outline our valuation of synthetic CDOs. To create these structures,
the owner of a portfolio of single–name CDS distributes the credit risk by creating loss tranches which,
in return, are sold to investors.18 A standardized index portfolio of CDSs is used as a reference port-
folio with synthetic CDO tranches. The protection seller offers compensation for losses induced by
credit events in this portfolio of reference entities. On the other hand, the owner of the portfolio as
the protection buyer pays a periodic premium to the protection seller. The premium is expressed as
an annual spread on the tranche’s outstanding notional. Premiums are usually paid quarterly.

The pricing of the tranche spreads is accomplished by matching the discounted expectations of the
payments of the protection seller and the protection buyer. This spread can be computed using an
actuarial approach based on a fixed premium leg and a floating protection leg for different tranches,
respectively.19

A further development in the market involves what is known as “single tranche CDOs”. These deals
are based on an arbitrary portfolio and some tranche where the buyer and seller of protection agree
to exchange the cash flows that would have been applicable as if a synthetic CDO had been set
up. The most important standard portfolios used for this purpose are the CDX IG, a portfolio of
125 investment–grade companies in North America, and the iTraxx IG, a portfolio of 125 European
investment–grade companies.20

The CDO structure is similar to a derivative on a credit portfolio based on percentiles with the
following attributes. The buyer of a tranche l with lower attachment KL

l and higher detachment point
KU

l will bear all losses in the portfolio value in excess of Kl,L and up to KU
l percent of the initial value

of the portfolio Ntotal such that the constructed CDO’s loss exposure is limited to KU
l −KL

l percent
of the initial portfolio value. Table 1 summarizes the different attachment/detachment percentage
levels for the two standard indices iTraxx IG and CDX IG.

PLACE TABLE 1 ABOUT HERE

Taking the risk–neutral default time probability distribution of the underlying names as given, we
generate future scenarios for the loss behavior of the portfolio. Under the assumption that the only

16There exist similar models in practice and it is often assumed that both M and Zi have distributions with the same
tail index.

17Fortunately, performance can be strongly improved to restrict the grid to a smaller abscissa range. This is possible
since the truncation produces negligible small values for the normal distributions in the tails due to their non–heavy–
tailed character. All procedures mentioned so far – including the numerical convolution – consume 12 seconds for one
specific parameter tuple (α, σ) in the symmetric case in C++ on a 1.5GHz processor and 512 MB of RAM.

18See Hull, Predescu and White (2005), p. 5.
19There is an exception concerning the up–front fee of the equity tranche which results in a different default time risk

profile.
20See Amato und Gyntelberg (2005).
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source of risk comes from the portfolio, the expected cash flows of the participating credit risk transfer
parties can thus simply be discounted at the risk–free rate. Due to this assumption, the formulas for
pricing synthetic CDOs do not differentiate between funded or unfunded transactions and the valua-
tion can be set up similar to plain-vanilla CDSs.

The portfolio under focus is set up under the following conventional homogeneity assumptions to
simplify computations:

• Independence of the firm’s credit risk and the default–free interest rates under the risk–neutral
measure.

• The correlation coefficient ρi,j for one year between each pair of random variables Xi, Xj is the
the same for any two firms i 6= j and will be indicated as ρ. In the employed factor model this
corresponds to a =

√
ρ.

• The default intensity λ generating the marginal default distributions is the same for all obligors.

• The loss given default – or correspondingly the recovery rate – is deterministic and the same for
all companies.

• The initial notional of each credit in the portfolio is the same.

4.1 Intensity Calibration by CDS Market Quotes

Before we consider the pricing of synthetic CDOs, we present a simple method to extract a repre-
sentative marginal default intensity λ from market quotes. We consider a CDS contract initiated at
time 0 with maturity T . Let the premium payment dates be denoted as 0 = t0 < t1 < . . . < tJ = T .
The CDS has notional N while sCDS denotes the annual CDS spread. In order to determine the fair
spread, the discounted premium and protection legs have to be computed by setting them equal under
risk–neutral expectations.

In the case of default before maturity, the protection seller has to make compensatory payments
amounting to (1 − R)N , where R is the recovery–of–face–value rate at default time τ . Today’s
expected value of this payment is

EPVprot(0) = E
[
B(0, τ)111{τ≤T}(1−R)N

]
, (7)

where
B(0, τ) = e−

R τ
0 rsds and E

[
111{τ≤T}

]
= Q(0, τ) = 1− e−

R τ
0 λsds.

PVprot(0) represents the expected present value of the compensatory payments and B(0, τ) is the
risk–neutral discount factor for time τ . In order to discretize this equation for the simple extraction
procedure of λ, we have to make a transformation for payoffs at default first, since τ is unknown.
Equation (7) thus becomes:

EPVprot(0) = E
[
B(0, τ) 111{τ≤T} (1−R)N

]
=

T∫
0

B(0, t) (1−R)N dQ(0, t).

These integrals represent the fact that payments are made when losses occur in continuous time.
For the implementation, however, we assume that potential defaults can only happen at the pre-
mium payment days. So no intermediate defaults are admitted by the model. We then get as an
approximation

T∫
0

B(0, t) (1−R)N dQ(0, t) ≈
J∑

j=1

B(0, tj) (1−R)N [Q(0, tj)−Q(0, tj−1)] .

The valuation of the premium leg is slightly more complicated when accrued premiums are considered.
At each CDS premium payment date the protection buyer has to make a payment if no default has
occurred until that date. If a default event occurs, the protection buyer has to pay the fraction of the
premium that has accrued since the last premium payment date at that specific default time τ . For
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simplification, accrued premiums are not considered and δ will be the accrual factor representing the
constant 3–month period between premium dates. The following equation expresses the expectation
of the present value of premium payments made:

EPVprem(0) = E

 J∑
j=1

B(0, tj)111{τ>tj}sCDSNδ

 = sCDSNδ
J∑

j=1

B(0, tj) (1−Q(0, tj)) .

As a final result, the fair spread with deterministic recovery rate and constant deterministic intensity
can be computed in the following way, as default is restricted to happen only at premium payment
dates:

sCDS =
(1−R)N

∑J
j=1 B(0, tj) [Q(0, tj)−Q(0, tj−1)]

Nδ
∑J

j=1 B(0, tj) (1−Q(0, tj))

= (1−R)

∑J
j=1 B(0, tj)

(
e−

R tj
0 λsds − e−

R tj−1
0 λsds

)
∑J

j=1 B(0, tj) e−
R tj
0 λsds δ

λs=λ= (1−R)

∑J
j=1 B(0, tj) e−λtj

(
e−λ(tj−1−tj) − 1

)∑J
j=1 B(0, tj) (e−λtj ) δ

= (1−R)

∑J
j=1 B(0, tj) e−λtj

(
e−λδ − 1

)∑J
j=1 B(0, tj) (e−λtj ) δ

= (1−R)

(
eλδ − 1

)
δ

.

This expression can be inverted to derive the deterministic default intensity as a function of the CDS
index spread:

λ =
1
δ

ln
(

sindexδ

1−R
+ 1

)
.

The resulting λ is utilized to compute the representative marginal default distributions in the expo-
nential model for all companies in the reference portfolio.

4.2 The Valuation of Index Tranches

A CDS index contract is insurance that covers default or other credit events as specified in the contract
for a pool of reference entities in the index.21 The buyer of protection on the index is obligated to
pay the same premium on all the reference entities in the index (called the fixed rate) for as long as
they have not been removed due to an event.

Once created, the components of the index are unchanged over the contract’s tenor. The payment or
premium payment dates are the standard CDS dates: 20th of March, June, September, and December.
Each index consists of the 125 most important CDSs. Index tranches are standardized regarding the
composition of the pool and the tranche notionals. Quotations of standardized tranches reflect a high
degree of liquidity and market forces are pushing towards two extremes: standardized index tranches
with great liquidity used in active trading and bespoke tranches which are designed for buy–and–hold
purposes that can be evaluated relative to an index.22 The premiums on the standardized mezzanine
and senior tranches are the spread with no upfront payment. By contrast, there exists an upfront
payment for the equity tranche as a percentage of tranche notional, in addition to paying a running
spread premium of 500 basis points.

We will now describe the standard market model that is used to compute prices. Let t denote the
time passed since the CDO transaction was started, T the maturity of the CDO, Ntotal the initial
portfolio value, and Ztotal(t) the percentage loss in the portfolio value at time t. The total loss at t
then is Ztotal(t)Ntotal. The loss suffered by the holder of tranche l from time 0 to t is a percentage
Zl(t) of the portfolio notional value Ntotal

Zl(t) = min
[
max

(
Ztotal(t)−KL

l , 0
)
,KU

l −KL
l

]
.

21See Amato und Gyntelberg (2005), p. 74.
22See Amato und Gyntelberg (2005), p. 77, footnote 10.
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We consider a transaction initiated at time 0 with maturity T . Again, let the premium payment dates
be denoted as 0 = t0 < t1 < . . . < tJ = T . The premium payment dates are on a quarterly basis, so
δ = 0.25 years.

In a Monte–Carlo simulation, for each generation of a future scenario, the respective losses of each
tranche at all specified premium payment dates are stored. After all simulation procedures have been
carried out, these values are averaged to obtain the expected percentage tranches losses

EZl(tj), for j = 0, . . . , J and ∀ l.

The expected present value of the protection leg is described by the following formula:

EPV prot
l (0) =

J∑
j=1

B

(
0,

tj + tj−1

2

) (
EZl(tj)− EZl(tj−1)

)
Ntotal.

The holder of tranche l receives a periodic premium payment with frequency δ years, amounting
to slδ times the tranche’s outstanding notional Nout

l (t). However, the initial tranche notional is
stochastically decaying in time induced by tranche losses. At time tj the outstanding tranche notional
is

Nout
l (tj) =

(
KU

l −KL
l − Zl(tj)

)
Ntotal.

At premium payment dates tj (j = 1, . . . , J) the expected average outstanding tranche notionals since
the last premium payment dates have to be considered. The outstanding between payment dates tj−1

and tj is simply the average of Nout
l (tj−1) and Nout

l (tj). It will be denoted as Nout
l (tj−1, tj) and it has

to be taken into account that defaults are assumed to occur only at the midpoints between arbitrary
premium payment dates. As a result, the expected average outstanding tranche notional between two
premium payment dates is assembled in the following way:

ENout
l (tj−1, tj) =

[
KU

l −KL
l − EZl(tj) +

EZl(tj)− EZl(tj−1)
2

]
Ntotal.

This equation directly allows for the computation of the expected present value of the premium
payments:

EPV prem
l (0) =

J∑
j=1

B(0, tj) E[Nout
l (tj−1, tj)] slδ. (8)

Finally, the equation for the constant over time fair spread sl of tranche l is:

sl =

∑J
j=1 B

(
0,

tj+tj−1
2

) (
EZl(tj)− EZl(tj−1)

)
Ntotal∑J

j=1 B(0, tj) E[Nout
l (tj−1, tj)] δ

.

There is a different quotation for the equity tranche. The protection seller receives the quoted upfront
fee, expressed as a percentage f of the tranche principal, so that the investor purchases the equity
tranche at the discount f(KU

equity −KL
equity)Ntotal. Additionally, a spread sEquity of 500 basis points

per year is paid on the outstanding tranche principal. Note that the overall consequence of this
agreement is a different exposure of the equity tranche to default timing. Just as before, this discount
is derived by setting equal the expected present values of the premium and the protection legs. Only
the premium leg in equation (8) has to be changed to:

EPV prem
equity(0) = f(KU

equity −KL
equity)Ntotal +

J∑
j=1

B(0, tj) E[Nout
equity(tj−1, tj)] sequityδ.

5 Calibration and Results

For the calibration to the iTraxx IG index we consider the tranche quotes on April 11, 2005. The
settlement date of the third series of this index is September 20, 2005 and matures on September 20,
2010. The index CDS spread on April 11, 2005 was 38.81 bps.
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There are 125 equally weighted reference entities in the index. Concerning the marginal default dis-
tributions and recovery rates, we construct a homogeneous portfolio with the usual assumptions. We
use the constant default intensity model to derive the marginal default distributions and assume a
constant recovery rate of R = 40%.23 The applicable risk–free rate for tranches of the Europe–based
iTraxx IG is the Euro zero curve.

Conveniently, we calibrate the equity tranche because its pricing is most sensitive to the model para-
meters. The input parameters are the factor loading a, and the tupel (α, σ) of the standardized STS
factor distributions.

In the literature it is often proposed that the calculus–based method of Powell relying on multidimen-
sional direction sets be employed.24 We consider a version of the intuitive genetic algorithm (GA),
instead, and provide additional information about the other tranche quotes in the objective or fitness
function to obtain an overall fit with the main focus on the equity tranche quote. Table 2 shows the
calibration results for the Gaussian and STS versions of the HPW model.

PLACE TABLE 2 ABOUT HERE

The market quote for the equity tranche is matched exactly by the two competing models. For the
other tranche quotes, there is a large gap between market quotes and those quotes produced by the
Gaussian version of the HPW model. The version with symmetric STS distribution, however, provides
a good fit. Note that the senior tranche with 12% attachment and 22% detachment level is priced
much more realistically than the Gaussian version is capable of. There is the same environment of
linear correlation provided in our extension but simultaneously, there are additional effects that influ-
ence the joint default loss behavior. For example, due to extreme negative outcomes of the systematic
factor, there are a large number of joint defaults which are observable more often than in the Gaussian
case.

In the empirical fit it can also be observed that our model provides a close match to the rest of the
tranches, including a perfect match to the price sensitive equity tranche. This remarkable overall-fit
can be interpreted in the following way: The dynamic interplay of the heavy–tailed systematic and
idiosyncratic factors results in scenarios that are characterized by groups of firms defaulting jointly in
short time horizons. The frequency of occurrence and the number of defaulting firms in these scenarios
seem to be adequate to match the cost of protection of all tranches simultaneously.

An example is the extreme negative outcome of the systematic factor: At first, such a scenario almost
never occurs in the Gaussian model and second – to further develop this exemplified scenario – there
might be a reasonable amount of idiosyncratic heavy-tailed factors with extreme positive outcomes,
which is almost never displayed by normally distributed idiosyncratic factors. This in turn means
that the size of the default cluster due to the systematic impact may be reduced at the same time by
some surviving companies due to their extreme positive idiosyncratic factor outcomes. This is just an
example of the complex default environment created by our model. It can be stated that there is an
adequate implicit micro structure of default scenarios provided by our model as the close match of the
model quotes to empirical data shows. This can also be seen in Figure 1. For graphical illustration,
it attributes the spreads of tranches 2 to 5 from Table 2 to the tranches’ detachment points and then
interpolates.

PLACE FIGURE 1 ABOUT HERE

As the spread lines reveal, the market quotes and the spreads given by the STS–HPW model show
much more resemblance than the Gaussian HPW alternative. In comparison to the market, the
Gaussian model exaggerates the cost of protection for tranches 2 to 4 and underestimates the cost of

23This is due to standardized deal conventions.
24See for example Press, Teukolsky, Vetterling and Flannery (1992), p. 412.
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protection for tranche 5 – the senior tranche. In contrast, the senior tranche is nearly matched in the
STS–HPW model and there is also a good overall fit to other tranches provided.

Due to the calibration flexibility of our genetic algorithm, the error weights of a few selected tranches
can be increased in the optimization function. To a certain degree, this renders possible the closest
matchings of some quotes while other tranche quotes may then exhibit more distant positions to what
the market believes is correct in terms of cost of protection.

The Gaussian HPW model was calibrated to the equity tranche with a factor loading a =
√

0.2278.
The best parameters in the STS extension of the HPW model are α = 1.8834, σ = 0.5873, and
a =

√
0.2565. This is equivalent to truncation levels of around ±11.0938 for the standardized STS

distributions. Note that the resulting STS distribution with the remarkable fit to empirical data is
dominated by a stable distribution in the center part with α being well below 2, i.e. a leptokurtic,
non-Gaussian. It has to be remarked that the solution space for the genetic algorithm included the
Gaussian case which was not chosen in the evolutionary process generated by the genetic algorithm.
This suggests that extreme outcomes of systematic and idiosyncratic risk factors are necessary to lead
to such empirical results.

Considering the status of indices such as the iTraxx or CDX and their standard tranches as benchmarks
for credit risk and correlation, our model provides high economic value: As we use the Black–Cox–
type structural model we establish a dynamic relation between the default process and the financial
variables of the underlying companies. Additionally, we incorporate empirical findings of asset re-
turn distributions such as asymmetry and leptokurtosis. In this way, we extend the approach based
solely on linear correlation by the incorporation of extreme events in the systematic risk driver that
represent default clustering in times of recession, and more generally, there are extreme positive and
negative outcomes of systematic and idiosyncratic risk drivers that create a special, desirable default
environment. Empirically, this is essential to take into consideration as institutions and markets are
complex feedback–driven systems.

Our empirical results and those of many other researchers show that the Gaussian hypothesis has to
be rejected in most cases. The world is not fully informed or acts rationally as suggested by the idea
of the Homo Oeconomicus. Only in some phases of the market we can assume “normal” behavior or
Gaussianity. For these reasons it is important to use heavy–tailed distributions in financial modeling.
The STS distribution is a good solution as it reproduces empirical findings of financial asset returns
concerning extreme values. Moreover, in contrast to the α-stable class, this distribution class is com-
patible with the convenient pricing approaches due to the finite–moment generating function. Since
our optimization algorithm leaves room for α–parameterizations close to or equal to 2, our model is
flexible to cover normal market phases as well as extreme market scenarios.

In future risk management applications, more detailed information about portfolio credit risk could
be provided besides basic information sets such as default time distributions or general asset return
correlation. A tail index of a heavy-tailed distribution applied in an enhanced version of the standard
Gaussian copula model could be such an additional information set.

A further improvement in matching all index tranche quotes simultaneously, even for different ma-
turities, could be accomplished by the use of another empirically meaningful parameter of the STS
distribution: β. Incorporating asymmetric STS distributions will lead to different dependence effects
in the upper and lower distribution tails. The full potential of STS distributions in terms of reflecting
empirical asset return properties such as heavy tails or asymmetry, can easily be exploited in the
model presented in this paper. The asymmetric left and right truncation points of standardized STS
distributions can be determined by adequate optimization procedures. The additional parameter β
can be found together with the other optimization parameters in the evolutionary environment of the
genetic algorithm.25 Since the introduction of heavy tails led to such improvements, the considera-
tion of both asymmetry and heavy tails might already lead to a perfect match of all tranche quotes

25An additional parameter will slow down the optimization speed of the genetic algorithm but variation of the evolution-
ary search might speed the procedure up. Also, further effort could be undertaken with respect to the implementation
of the model. Operations to build up the evaluation function of standardized STS distributions and the barrier cal-
ibration for a homogeneous portfolio require about 35 seconds. The Monte–Carlo simulation with 10,000 scenarios
consumes about 105 seconds. This part leaves room for various performance improvements.
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simultaneously. This is critical for efficient pricing and hedging.

There are other reasonable ways to improve the empirical quality of the model:

• Correlation and recovery rates may be modeled as stochastic quantities. The first reflects em-
pirical research showing that default correlations are positively dependent on default rates. The
second is empirically intuitive since recovery rates are negatively dependent on default rates.26

• A relaxation of the homogeneous portfolio assumption constitutes an additional computational
burden. However, it might also lead to a better quote fit since important market information is
not simply “averaged out”.

• The constant intensity calibration of the marginal default time distributions to the CDS index
quote and the interpolation method of the respective zero curve for discounting are approxima-
tions. More sophisticated models could be employed, instead.

6 Conclusion

In this paper, we introduced an enhanced version of the HPW model for true integrated pricing and
hedging of correlation dependent credit derivatives. Our model generalizes a Black–Cox–type struc-
tural model for credit portfolios with respect to the Gaussian distribution assumption. Instead of the
normal distribution, we employed the smoothly truncated α–stable (STS) distribution of the factor
diffusion processes.

This served as an alternative to the commonly used Gaussian or Student–t distributions. A com-
parison of the symmetric STS and the Gaussian version of the HPW model showed the remarkable
advantage of the STS distribution in pricing standard tranches of CDS indices such as iTraxx. That
is, the STS adapted favorably to characteristics observed in financial markets such as asymmetry and
heavy–tailedness in a tractable way, as respective parameters are continuous and create an empirically
relevant distribution shape. The Gaussian distribution was found to be incapable of handling this.
Even the Student–t distribution was found useless since it fails to account for asymmetry and exhibits
non-fractional parameters for heavy–tailedness.

Our approach had two advantages over the standard static Gaussian copula model for pricing stan-
dard tranches of CDS indices such as the iTraxx. It offered the benefit of describing underlying credit
spreads and default behavior dynamically which was based on the Black-Cox approach. Additionally,
the STS distribution in this model framework leads to a nearly perfect match with tranche quotes of
the iTraxx index. The remarkable empirical fit could be attributed to the properties of the underly-
ing α–stable distribution reflecting the observed leptokurtic and asymmetric behavior of asset returns.

Our model was economically and statistically viable as it combined the ability of the structural model
to connect financial and default variables on the one hand with the empirical features of the α–stable
distribution on the other. This formed a transparent, comprehensive, and tractable model with appeal-
ing theoretical and empirical features. The dynamic interplay of risk factors due to tail-dependence
effects lead to default scenarios that were much richer in structure than the framework of linear corre-
lation. The latter environment was also provided by our model but, additionally, there was a special
dependence environment among reference entities that captures effects like default clustering in times
of recession. This effect could be clearly attributed to the reasonable amount of probability mass in
the tails of the STS distribution.

Correlated dynamic fluctuations of credit spreads in the HPW model rendered possible diverse pricing
and risk management applications of credit portfolios and certain corresponding derivatives. With
the STS extension of the HPW model, we presented a coherent framework for adequate pricing and
hedging of many correlation dependent credit derivatives such as synthetic CDOs, options on CDOs
or CDO2. Complex risk management activities based on integrated modeling of credit portfolios and
their corresponding risk mitigation instruments can be accomplished. This is due to the full cali-
bration of our convenient Merton–style approach to representative markets. For example, since our
precise and dynamic model is superior to the ordinary Gaussian copula it is now possible to efficiently
dissolve concentration risk in bond portfolios by the use of correlation dependent credit derivatives
26Hull, Predescu and White (2005) successfully extend their model in these directions.

15



when portfolio and risk transfer instruments are both modeled in our calibrated framework.

The resulting joint evolution of credit spreads was based on the interaction of heavy-tailed distribu-
tions in the factor model which was precisely calibrated to the market. This also resulted in a high
model quality of credit spread dynamics.

Therefore, since heavy–tailedness and asymmetry play an important role in realistic markets, we
strongly prefer distributions such as the STS in financial modeling.
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Index tranche no. Attachment in % Detachment in %
iTraxx IG

1 0 3
2 3 6
3 6 9
4 9 12
5 12 22

CDX IG
1 0 3
2 3 7
3 7 10
4 10 15
5 15 30

Table 1: iTraxx IG Index Tranches and CDX IG Index Tranches
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iTraxx IG 5–year 0-3% 3-6% 6-9% 9-12% 12-22% Sum of Errors
Market Quotes 24.70% 160 49 22.5 13.75

HPW model: Gaussian 24.70% 246.79 80.75 29.24 5.55
(0.54) (0.65) (0.30) (0.60) 2.09

HPW model: STS 24.70% 158.10 55.93 29.59 15.82
(0.01) (0.14) (0.32) (0.15) 0.62

Table 2: Spread predictions of iTraxx tranches in the Gaussian and STS versions of the HPW model.
The numbers in parentheses represent the relative errors referencing to the market quotes.
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Figure 1: Graphical illustration of Table 2, visualizing tranche spreads as a function of detachments
for the two models and the market.

21


